

Applications 1.2 – 3D Coordinates and Vectors

Section A - Revision

This section will help you revise previous learning which is required in this topic.

R1 I can identify 2D co-ordinates.

1. Write down the coordinates of the points A, B, C, D, E, F, G and H shown in the diagram below.

- 2. The points J, K and L have been plotted on the diagram shown below.
- (a) Write down the co-ordinates of J, K and L.
- (b) State the co-ordinates of M so that JKLM is a rhombus.

R2 I can use Pythagoras to calculate the distance between two points without using a calculator.

2. Determine the distance between the given points, expressing your answer as a surd in its simplest form where necessary.

Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test for 3D Coordinates and Vectors (Applications 1.2)

1. The diagrams below show 2 directed line segments u and v.

Draw the resultant of

(a) 3u + v (b) 2u + 2v

2. The diagram below shows a square based model of a glass pyramid of height 8 cm. Square OABC has a side length of 3 cm.

The coordinates of A are (3, 0, 0).

C lies on the y-axis

Write down the coordinates of

(a) B (b) C (c) D.

3. The forces acting on a body are represented by three vectors p, q and r as given below.

$$p = \begin{pmatrix} 5\\4\\5\cdot5 \end{pmatrix}$$
 $q = \begin{pmatrix} 2\cdot5\\-3\\1\cdot5 \end{pmatrix}$ $r = \begin{pmatrix} -7\cdot5\\-2\\-4 \end{pmatrix}$

Find the resultant force.

4. The forces acting on a body are represented by three vectors ${\bf k},\,{\bf l}$ and ${\bf m}$ as given below.

$$k = \begin{pmatrix} 3 \\ 2 \cdot 5 \\ -2 \end{pmatrix} \qquad l = \begin{pmatrix} 2 \\ 3 \\ 1 \cdot 5 \end{pmatrix} \qquad m = \begin{pmatrix} -3 \cdot 5 \\ 0 \\ -2 \end{pmatrix}$$

Find the resultant force.

5. Vector
$$\boldsymbol{a} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$
 and vector $\boldsymbol{b} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$

Calculate |2a + 3b|.

6. Vector
$$\boldsymbol{a} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$
 and vector $\boldsymbol{b} = \begin{pmatrix} -2 \\ -5 \end{pmatrix}$.

Calculate |a + 2b|.

Section C - Operational Skills Section

This section provides problems with the operational skills associated with Vectors.

O1 I can use 3D coordinates and position vectors to locate a point in 3D space.

The diagram shows the cuboid OABCDEFG.
 O is the origin and OA, OC and OD are aligned with the x, y and z axes respectively.
 The point F has coordinates (5, 3, 4).

List the coordinates of the other six vertices.

 The diagram shows the square based pyramid DOABC. O is the origin with OA and OC aligned with the x and y axes respectively. The point D has coordinates (6, 6, 10).

Write down the coordinates of the points A, B and C.

3. The diagram shows a cube placed on top of a cuboid, relative to the coordinate axes.

A is the point (8, 4, 6).

Write down the coordinates of B and C.

4. Three points A, B and C have the coordinates (2, 5, 3), (-1, 3, 0) and (1, 4, 2) respectively. Find the vectors

(a)	 O A	(b)	\overrightarrow{OB}	(c)	0 Ċ
(d)	\overrightarrow{AB}	(e)	BC	(f)	ĀĈ

O2 I can add, subtract vectors and multiply a vector by a scalar to find a resultant vector.

1. If vector
$$a = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 and vector $b = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, find the resultant vector:
(a) $a + b$ (b) $a - b$ (c) $3a + b$
(d) $a - 2b$ (e) $5a - 3b$ (f) $2a + 4b$

2. If vector
$$a = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$$
 and vector $b = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$, find the resultant vector:
(a) $a + b$ (b) $a - b$ (c) $2a + 3b$
(d) $5a - b$ (e) $3a - 2b$ (f) $a + 4b$

3. If vector
$$p = \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix}$$
 and vector $q = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$, find the resultant vector:
(a) $p + q$ (b) $p - q$ (c) $p + 2q$
(d) $2p - q$ (e) $3p - 5q$ (f) $4p + 3q$

03 I can find the magnitude of vector (or resultant vector)

1. If
$$p = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$
 and $q = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix}$, find:
(a) $|p|$ (b) $|q|$ (c) $|p+q|$
(d) $|p-q|$ (e) $|3p-q|$ (f) $|2p+3q|$

2. Three vectors are defined as $\overrightarrow{AB} = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}$, $\overrightarrow{CD} = \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix}$ and $\overrightarrow{EF} = \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}$.

Find:

- (a) $|\overrightarrow{AB}|$ (b) $|\overrightarrow{CD}|$ (c) $|\overrightarrow{EF}|$
- **3.** Three points A, B and C have the coordinates (2, 5, 3), (-1, 3, 0) and (1, 4, 2) respectively. Find the vectors

(a)	\overrightarrow{OA}	(b)	\overrightarrow{OB}	(c)	0Ĉ
(d)	\overrightarrow{AB}	(e)	BC	(f)	ĀĈ

04 I can use vectors in vector diagrams.

1. In the diagram, OABCDE is a regular hexagon with centre M.

Vectors \boldsymbol{a} and \boldsymbol{b} are represented by \overrightarrow{OA} and \overrightarrow{OB} respectively.

- (a) Express \overrightarrow{AB} in terms of a and b.
- (b) Express \overrightarrow{OC} in terms of a and b.

- 2. In the diagram OACB is a parallelogram
 - $\overrightarrow{OA} = a \text{ and } \overrightarrow{OB} = b$ In terms of a and b find
 (i) \overrightarrow{OC} (ii) \overrightarrow{BA} (iii) \overrightarrow{CA} a = a = a = b(iii) \overrightarrow{BA} (iii) \overrightarrow{CA} b = b
- **3.** In the diagram below vectors \boldsymbol{a} and \boldsymbol{b} are represented by \overrightarrow{PR} and \overrightarrow{RQ} respectively.

- (a) Express \overrightarrow{PQ} in terms of a and b.
- (b) S is the midpoint of PQ. Express \overrightarrow{QS} in terms of *a* and *b*.
- 4. The diagram shows a square-based pyramid P, QRST. \overrightarrow{TS} , \overrightarrow{TQ} and \overrightarrow{TP} represent f, g and h respectively.

Express \overrightarrow{RP} in terms of **f**, **g** and **h**.

С

Section D - Reasoning Skills Section

This section provides problems with the Reasoning skills associated in the context of 3D co-ordinates and Vectors.

- 1. The diagram shows a rectangular based pyramid, relative to the coordinate axes.
 - A is the point (2, 0, 0).
 - V is the point (5, 2, 6).

(a) Write down the coordinates of B.

(b) Calculate the length of edge AV of the pyramid.

2. Two forces acting on a rocket are represented by vectors u and v.

$$\boldsymbol{u} = \begin{pmatrix} 2 \\ -5 \\ -3 \end{pmatrix}$$
 and $\boldsymbol{v} = \begin{pmatrix} 7 \\ 4 \\ -1 \end{pmatrix}$.

Calculate |u + v|, the magnitude of the resultant force.

Express your answer as a surd in its simplest form.

- **3.** A cuboid crystal is placed relative to the coordinate axes as shown.
 - (a) Write down \overrightarrow{BC} in component form.
 - (b) Calculate $|\overrightarrow{BC}|$.

4. With coordinate axes as shown, the point A is (2, 4, 6).

Write down the coordinates

of B, C and D.

5. DOABC is a square based pyramid as shown in the diagram below.

O is the origin, D is the point (2, 2, 6) and OA = 4 units.

M is the mid-point of OA.

- (a) State the coordinates of B.
- (b) Express \overrightarrow{DB} and \overrightarrow{DM} in component form.

Answers

Section A

R1

A(3, 2) B(-2, 5) C(-6, 3) D(-4, -3) E(0, -5) F(1, -2) G(6, 0) H(-6, -5)
 (a) J(-7, 2) K(-2, 6) L(3, 2)
 (b) M(-2, -2)

R2

1. (a) C (5, 1)
(b) (i) AC = 3 (ii) BC = 4
(c) AB = 5
2. (a) AB =
$$\sqrt{29}$$
 (b) CD = $2\sqrt{5}$ (c) EF = 10 (d) GH = $3\sqrt{5}$

Section **B**

1. (a)&(b) See Diagram
2. (a)B(3, 3, 0) (b) C(0, 3, 0) (c) D(1.5, 1.5, 8)
3.
$$\begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}$$

4. $\begin{pmatrix} 1.5 \\ 5.5 \\ -2.5 \end{pmatrix}$
5. $\sqrt{337}$
6. $2\sqrt{13}$

Section C

01

1.
$$A(5, 0, 0)$$
 $B(5, 3, 0)$ $C(0, 3, 0)$ $D(0, 0, 4)$ $E(5, 0, 4)$ $F(0, 3, 4)$
2. $A(12, 0, 0)$ $B(12, 12, 0)$ $C(0, 12, 0)$
3. $B(8, 4, 10)$ $C(4, 0, 10)$
4. (a) $\begin{pmatrix} 2\\5\\3 \end{pmatrix}$ (b) $\begin{pmatrix} -1\\3\\0 \end{pmatrix}$ (c) $\begin{pmatrix} 1\\4\\2 \end{pmatrix}$ (d) $\begin{pmatrix} -3\\-2\\-3 \end{pmatrix}$ (e) $\begin{pmatrix} 2\\1\\2 \end{pmatrix}$ (f) $\begin{pmatrix} -1\\-1\\-1 \end{pmatrix}$
O2
1. (a) $\begin{pmatrix} 5\\5 \end{pmatrix}$ (b) $\begin{pmatrix} -1\\-3 \end{pmatrix}$ (c) $\begin{pmatrix} 9\\7 \end{pmatrix}$ (d) $\begin{pmatrix} -4\\-7 \end{pmatrix}$ (e) $\begin{pmatrix} 1\\-7 \end{pmatrix}$ (f) $\begin{pmatrix} 16\\18 \end{pmatrix}$

2. (a)
$$\binom{5}{4}$$
 (b) $\binom{1}{-4}$ (c) $\binom{0}{-12}$ (d) $\binom{13}{-4}$ (e) $\binom{5}{-8}$ (f) $\binom{-5}{-16}$
3. (a) $\binom{-2}{6}$ (b) $\binom{-4}{2}$ (c) $\binom{5}{8}$ (d) $\binom{-5}{6}$ (e) $\binom{-18}{2}$ (f) $\binom{5}{22}$
03
1. (a) $\sqrt{14}$ (b) $\sqrt{10}$ (c) $\sqrt{26}$ (d) $\sqrt{14}$ (e) $\sqrt{130}$
(f) $\sqrt{158}$
2. (a) $\sqrt{13}$ (b) 3 (c) $\sqrt{27} = 3\sqrt{3}$
3. (a) $\binom{2}{5}_{3}$ (b) $\binom{-1}{3}_{0}$ (c) $\binom{1}{4}_{2}$ (d) $\binom{-3}{-2}_{-3}$ (e) $\binom{2}{1}_{2}$
(f) $\binom{-1}{-1}_{-1}$

1.	(a) <i>b</i> – <i>a</i>	(b) 2(<i>b</i> − <i>a</i>)
2.	(i) $b + a$	(ii) $-b+a$ (iii) $-b$
3.	(a) $a + b$	(b) $\frac{1}{2}(-a-b)$
4.	-f-g+h	

Section D

1. (a) B (8, 4, 0) (b) AV = 7
2.
$$7\sqrt{2}$$

3. (a) $\overrightarrow{BC} = \begin{pmatrix} 4\\2\\-3 \end{pmatrix}$ (b) $\sqrt{29}$
4. B(6, 4, 2) C(4, 3, 4) D(6, 2, 2)
5. (a) B (4, 4, 0) (b) $\overrightarrow{DB} = \begin{pmatrix} 2\\2\\-6 \end{pmatrix} \quad \overrightarrow{DM} = \begin{pmatrix} 0\\-2\\-6 \end{pmatrix}$