National 5 Portfolio

Applications 1.2-3D Coordinates and Vectors

Section A - Revision

This section will help you revise previous learning which is required in this topic.
R1 I can identify 2D co-ordinates.

1. Write down the coordinates of the points A, B, C, D, E, F, G and H shown in the diagram below.

2. The points J, K and L have been plotted on the diagram shown below.
(a) Write down the co-ordinates of J, K and L .
(b) State the co-ordinates of M so that JKLM is a rhombus.

3D Coordinates and Vectors

R2 I can use Pythagoras to calculate the distance between two points without using a calculator.

1. Using the diagram opposite
(a) What are the co-ordinates of C ?
(b) Find the length of
(i) AC
(ii) BC
(c) Using Pythagoras calculate the length of $A B$.

2. Determine the distance between the given points, expressing your answer as a surd in its simplest form where necessary.
(a)

(b)

(c) $E(1,1)$ and $F(7,9)$
(d) $G(2,4)$ and $H(5,-2)$

3D Coordinates and Vectors

Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test for 3D Coordinates and Vectors (Applications 1.2)

1. The diagrams below show 2 directed line segments \boldsymbol{u} and \boldsymbol{v}.

Draw the resultant of
(a) $3 u+v$
(b) $2 u+2 v$
2. The diagram below shows a square based model of a glass pyramid of height 8 cm . Square $O A B C$ has a side length of 3 cm .

The coordinates of A are $(3,0,0)$.
C lies on the y-axis

Write down the coordinates of
(a) B
(b) C
(c) D.

3D Coordinates and Vectors

3. The forces acting on a body are represented by three vectors $\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r} as given below.

$$
p=\left(\begin{array}{c}
5 \\
4 \\
5 \cdot 5
\end{array}\right) \quad q=\left(\begin{array}{c}
2 \cdot 5 \\
-3 \\
1 \cdot 5
\end{array}\right) \quad r=\left(\begin{array}{c}
-7 \cdot 5 \\
-2 \\
-4
\end{array}\right)
$$

Find the resultant force.
4. The forces acting on a body are represented by three vectors \mathbf{k}, l and m as given below.

$$
k=\left(\begin{array}{c}
3 \\
2 \cdot 5 \\
-2
\end{array}\right) \quad l=\left(\begin{array}{c}
2 \\
3 \\
1 \cdot 5
\end{array}\right) \quad m=\left(\begin{array}{c}
-3 \cdot 5 \\
0 \\
-2
\end{array}\right)
$$

Find the resultant force.
5. Vector $\boldsymbol{a}=\binom{5}{3}$ and vector $\boldsymbol{b}=\binom{2}{-5}$

Calculate $|2 \boldsymbol{a}+3 \boldsymbol{b}|$.
6. Vector $\boldsymbol{a}=\binom{3}{6}$ and vector $\boldsymbol{b}=\binom{-2}{-5}$.

Calculate $|\boldsymbol{a}+2 \boldsymbol{b}|$.

3D Coordinates and Vectors

Section C - Operational Skills Section

This section provides problems with the operational skills associated with Vectors.

01 I can use 3D coordinates and position vectors to locate a point in 3D space.

1. The diagram shows the cuboid OABCDEFG. O is the origin and OA, OC and OD are aligned with the x, y and z axes respectively.
The point F has coordinates ($5,3,4$).
List the coordinates of the other six vertices.

2. The diagram shows the square based pyramid DOABC. 0 is the origin with OA and OC aligned with the x and y axes respectively. The point D has coordinates $(6,6,10)$.

Write down the coordinates of the points A, B and C.

3. The diagram shows a cube placed on top of a cuboid, relative to the coordinate axes.

A is the point $(8,4,6)$.

Write down the coordinates of B and C.

3D Coordinates and Vectors

4. Three points A, B and C have the coordinates $(2,5,3),(-1,3,0)$ and $(1,4,2)$ respectively. Find the vectors
(a) $\overrightarrow{O A}$
(b) $\overrightarrow{O B}$
(c) $\overrightarrow{O C}$
(d) $\overrightarrow{A B}$
(e) $\overrightarrow{B C}$
(f) $\overrightarrow{A C}$

02 I can add, subtract vectors and multiply a vector by a scalar to find a resultant vector.

1. If vector $\boldsymbol{a}=\binom{2}{1}$ and vector $\boldsymbol{b}=\binom{3}{4}$, find the resultant vector:
(a) $a+b$
(b) $a-b$
(c) $3 \boldsymbol{a}+\boldsymbol{b}$
(d) $a-2 b$
(e) $5 a-3 b$
(f) $2 \boldsymbol{a}+4 \boldsymbol{b}$
2. If vector $\boldsymbol{a}=\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)$ and vector $\boldsymbol{b}=\left(\begin{array}{l}2 \\ 4 \\ 2\end{array}\right)$, find the resultant vector:
(a) $a+b$
(b) $a-b$
(c) $2 \boldsymbol{a}+3 \boldsymbol{b}$
(d) $5 a-b$
(e) $3 a-2 b$
(f) $\boldsymbol{a}+4 \boldsymbol{b}$
3. If vector $\boldsymbol{p}=\left(\begin{array}{c}-1 \\ 4 \\ 2\end{array}\right)$ and vector $\boldsymbol{q}=\left(\begin{array}{c}3 \\ 2 \\ -2\end{array}\right)$, find the resultant vector:
(a) $\boldsymbol{p}+\boldsymbol{q}$
(b) $\boldsymbol{p}-\boldsymbol{q}$
(c) $\boldsymbol{p}+2 \boldsymbol{q}$
(d) $2 \boldsymbol{p}-\boldsymbol{q}$
(e) $3 \boldsymbol{p}-5 \boldsymbol{q}$
(f) $4 \boldsymbol{p}+3 \boldsymbol{q}$

03 I can find the magnitude of vector (or resultant vector)

1. If $\boldsymbol{p}=\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$ and $\boldsymbol{q}=\left(\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right)$, find:
(a) $|\boldsymbol{p}|$
(b) $|\boldsymbol{q}|$
(c) $|\boldsymbol{p}+\boldsymbol{q}|$
(d) $|p-q|$
(e) $|3 p-q|$
(f) $|2 \boldsymbol{p}+3 \boldsymbol{q}|$

3D Coordinates and Vectors

2. Three vectors are defined as $\overrightarrow{A B}=\left(\begin{array}{c}0 \\ 2 \\ -3\end{array}\right), \overrightarrow{C D}=\left(\begin{array}{c}-3 \\ 0 \\ 0\end{array}\right)$ and $\overrightarrow{E F}=\left(\begin{array}{l}1 \\ 1 \\ 5\end{array}\right)$.

Find:
(a) $|\overrightarrow{A B}|$
(b) $|\overrightarrow{C D}|$
(c) $|\overrightarrow{E F}|$
3. Three points A, B and C have the coordinates $(2,5,3),(-1,3,0)$ and $(1,4,2)$ respectively. Find the vectors
(a) $\overrightarrow{O A}$
(b) $\overrightarrow{O B}$
(c) $\overrightarrow{O C}$
(d) $\overrightarrow{A B}$
(e) $\overrightarrow{B C}$
(f) $\overrightarrow{A C}$

04 I can use vectors in vector diagrams.

1. In the diagram, OABCDE is a regular hexagon with centre M.

Vectors \boldsymbol{a} and \boldsymbol{b} are represented by $\overrightarrow{O A}$ and $\overrightarrow{O B}$ respectively.
(a) Express $\overrightarrow{A B}$ in terms of \boldsymbol{a} and \boldsymbol{b}.
(b) Express $\overrightarrow{O C}$ in terms of \boldsymbol{a} and \boldsymbol{b}.

3D Coordinates and Vectors

2. In the diagram OACB is a parallelogram

$$
\overrightarrow{O A}=\boldsymbol{a} \text { and } \overrightarrow{O B}=\boldsymbol{b}
$$

In terms of \boldsymbol{a} and \boldsymbol{b} find
(i) $\overrightarrow{O C}$
(ii) $\overrightarrow{B A}$
(iii) $\overrightarrow{C A}$

3. In the diagram below vectors \boldsymbol{a} and \boldsymbol{b} are represented by $\overrightarrow{P R}$ and $\overrightarrow{R Q}$ respectively.

(a) Express $\overrightarrow{P Q}$ in terms of \boldsymbol{a} and \boldsymbol{b}.
(b) S is the midpoint of PQ . Express $\overrightarrow{Q S}$ in terms of \boldsymbol{a} and \boldsymbol{b}.
4. The diagram shows a square-based pyramid P, QRST.
$\overrightarrow{T S}, \overrightarrow{T Q}$ and $\overrightarrow{T P}$ represent \mathbf{f}, \mathbf{g} and \mathbf{h} respectively.

Express $\overrightarrow{\mathrm{RP}}$ in terms of \mathbf{f}, \mathbf{g} and \mathbf{h}.

3D Coordinates and Vectors

Section D - Reasoning Skills Section

This section provides problems with the Reasoning skills associated in the context of 3D co-ordinates and Vectors.

1. The diagram shows a rectangular based pyramid, relative to the coordinate axes.

- A is the point $(2,0,0)$.
- V is the point $(5,2,6)$.
(a) Write down the coordinates of B.
(b) Calculate the length of edge AV of the pyramid.

2. Two forces acting on a rocket are represented by vectors \boldsymbol{u} and \boldsymbol{v}.

$$
\boldsymbol{u}=\left(\begin{array}{r}
2 \\
-5 \\
-3
\end{array}\right) \text { and } \boldsymbol{v}=\left(\begin{array}{r}
7 \\
4 \\
-1
\end{array}\right)
$$

Calculate $|\boldsymbol{u}+\boldsymbol{v}|$, the magnitude of the resultant force.
Express your answer as a surd in its simplest form.
3. A cuboid crystal is placed relative to the coordinate axes as shown.
(a) Write down $\overrightarrow{B C}$ in component form.
(b) Calculate $|\overrightarrow{B C}|$.

3D Coordinates and Vectors

4. With coordinate axes as shown, the point A is $(2,4,6)$.

Write down the coordinates of B, C and D.

5. DOABC is a square based pyramid as shown in the diagram below.

O is the origin, D is the point $(2,2,6)$ and $O A=4$ units.
M is the mid-point of OA.
(a) State the coordinates of B.
(b) Express $\overrightarrow{D B}$ and $\overrightarrow{D M}$ in component form.

3D Coordinates and Vectors

Answers

Section A

R1

1. $A(3,2) B(-2,5) C(-6,3) D(-4,-3) E(0,-5) F(1,-2) G(6,0) H(-6,-5)$
2. (a) $J(-7,2) K(-2,6) L(3,2)$
(b) $M(-2,-2)$

R2

1. (a) $C(5,1)$
(b) (i) $A C=3$ (ii) $B C=4$
(c) $A B=5$
2. (a) $A B=\sqrt{29}$
(b) $C D=2 \sqrt{5}$
(c) $\mathrm{EF}=10$
(d) $\mathrm{GH}=3 \sqrt{5}$

Section B

1. (a)\&(b) See Diagram
2. (a) $B(3,3,0)$
(b) $\mathrm{C}(0,3,0)$
(c) $D(1 \cdot 5,1 \cdot 5,8)$
3. $\left(\begin{array}{r}0 \\ -1 \\ 3\end{array}\right)$
4. $\left(\begin{array}{r}1 \cdot 5 \\ 5 \cdot 5 \\ -2 \cdot 5\end{array}\right)$
5. $\sqrt{337}$
6. $2 \sqrt{13}$

Section C

01

1. $A(5,0,0) \quad B(5,3,0) \quad C(0,3,0) \quad D(0,0,4) \quad E(5,0,4) \quad F(0,3,4)$
2. $A(12,0,0) \quad B(12,12,0) \quad C(0,12,0)$
3. $B(8,4,10) \quad C(4,0,10)$
4. (a) $\left(\begin{array}{l}2 \\ 5 \\ 3\end{array}\right)$
(b) $\left(\begin{array}{c}-1 \\ 3 \\ 0\end{array}\right)$
(c) $\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$
(d) $\left(\begin{array}{l}-3 \\ -2 \\ -3\end{array}\right)$
(e) $\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)$
(f) $\left(\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right)$

02
1.
(a) $\binom{5}{5}$
(b) $\binom{-1}{-3}$
(c) $\binom{9}{7}$
(d) $\binom{-4}{-7}$
(e) $\binom{1}{-7}$
(f) $\binom{16}{18}$

3D Coordinates and Vectors

2.

(a) $\left(\begin{array}{l}5 \\ 4 \\ 5\end{array}\right)$
(b) $\left(\begin{array}{c}1 \\ -4 \\ -1\end{array}\right)$
(c) $\left(\begin{array}{c}0 \\ -12 \\ -4\end{array}\right)$
(d) $\left(\begin{array}{c}13 \\ -4 \\ 3\end{array}\right)$
(e) $\left(\begin{array}{c}5 \\ -8 \\ -1\end{array}\right)$
(f) $\left(\begin{array}{c}-5 \\ -16 \\ -7\end{array}\right)$
3. (a) $\left(\begin{array}{c}-2 \\ 6 \\ 0\end{array}\right)$
(b) $\left(\begin{array}{c}-4 \\ 2 \\ 4\end{array}\right)$
(c) $\left(\begin{array}{c}5 \\ 8 \\ -2\end{array}\right)$
(d) $\left(\begin{array}{c}-5 \\ 6 \\ 6\end{array}\right)$
(e) $\left(\begin{array}{c}-18 \\ 2 \\ 16\end{array}\right)$ (f) $\left(\begin{array}{c}5 \\ 22 \\ 2\end{array}\right)$

03
1.
(a) $\sqrt{14}$
(b) $\sqrt{10}$
(c) $\sqrt{26}$
(d) $\sqrt{14}$
(e) $\sqrt{130}$
(f) $\sqrt{158}$
2.
(a) $\sqrt{13}$
(b) 3
(c) $\sqrt{27}=3 \sqrt{3}$
3.
(a) $\left(\begin{array}{l}2 \\ 5 \\ 3\end{array}\right)$
(b) $\left(\begin{array}{c}-1 \\ 3 \\ 0\end{array}\right)$
(c) $\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$
(d) $\left(\begin{array}{l}-3 \\ -2 \\ -3\end{array}\right)$
(e) $\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)$
(f) $\left(\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right)$

04
1.
(a) $b-a$
(b) $2(b-a)$
2.
(i) $b+a$
(ii) $-b+a$
(iii) $-b$
3.
(a) $a+b$
(b) $\frac{1}{2}(-a-b)$
4. $-f-g+h$

Section D

1. (a) $B(8,4,0)$
(b) $A V=7$
2. $7 \sqrt{2}$
3. (a) $\overrightarrow{B C}=\left(\begin{array}{r}4 \\ 2 \\ -3\end{array}\right) \quad$ (b) $\sqrt{29}$
4. $B(6,4,2) C(4,3,4) D(6,2,2)$
5. (a) $\mathrm{B}(4,4,0) \quad$ (b) $\overrightarrow{D B}=\left(\begin{array}{r}2 \\ 2 \\ -6\end{array}\right) \quad \overrightarrow{D M}=\left(\begin{array}{r}0 \\ -2 \\ -6\end{array}\right)$
