Cumbernauld Academy Maths Department

S3 Level 4/5 Revision Booklet

Learning Intention I can simplify and carry out calculations using surds.			
Success Criteria	()	-	(2)
- I can identify surds.			
- I know that $\sqrt{a b}=\sqrt{a} \times \sqrt{b}, \quad \sqrt{a} \times \sqrt{b}=\sqrt{a b}, \quad \sqrt{a} \times \sqrt{a}=a \quad$ and $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$.			
- I know how to fully simplify surds. \quad Show that $\sqrt{75}=5 \sqrt{3} \quad$ Simplify $\sqrt{72}$			
- I can add and subtract surds. Simplify $2 \sqrt{5}+7 \sqrt{5}, \sqrt{75}-\sqrt{48}$ and $\sqrt{75}-\sqrt{27}$. Express $\sqrt{12}-\sqrt{3}+\sqrt{48}$ as a surd in its simplest form.			
- I can multiply surds. \quad Expand and simplify $\sqrt{3}(\sqrt{3}-1) \quad \sqrt{2}(3-\sqrt{6}) \quad(2+\sqrt{2})(3+\sqrt{2}) \quad(2 \sqrt{5})(2 \sqrt{5}-1)$			

Learning Intention I can simplify and evaluate expressions using the laws of indices.						
Success Criteria				()	\bigcirc	©
- I know that $3^{4}=3 \times 3 \times 3 \times 3$ and 3 is the base value and 4 is the index value.						
- I know that $a^{m} \times a^{n}=a^{m+n}$	Simplify	$x^{4} \times x^{5}$	$3 x^{7} \times 5 x^{2}$			
- I know that $a^{m} \div a^{n}=a^{m-n}$	Simplify	$x^{8} \div x^{5}$	$x^{2} \div x^{-3}$			
- I know that $\left(a^{m}\right)^{n}=a^{m n}$	Simplify	$\left(2 a^{3}\right)^{4}$				

- I know that $a^{0}=1$	Simplify	$5^{0} \quad\left(3 a b^{2}\right)^{0}$		
- I can simplify expressions of the form	$\frac{x^{5} \times x^{4}}{x^{-2}}$	$6 x^{2} \times 2 x^{-\frac{1}{3}}$		

Learning Intention I can simplify algebraic expressions involving the expansion of brackets.						
Success Criteria				())	©
- I know how to expand a bracket and simplify: $3+4(b-2)$	$4 c-(c-3)$	$4(2 t+1)+5(3 t$				
- I know how to expand a bracket of the form: $2 t(3 t+1)$	$7 g(6-g)$					
- I know how to expand pairs of brackets with 2 linear expressior	$(x+3)(x+5)$	$(4 y+1)(3 y-2)$	$(3 x-4)^{2}$			
- I know how to expand brackets with a linear and a quadratic	ession:	$-1)\left(3 y^{2}+5 y-2\right)$				

Learning Intention I can factorise an algebraic expression.				
Success Criteria		©	-	\bigcirc
- I can factorise an expression by finding the Highest Common Factor (HCF). Factorise the following: $21-35 x \quad 8 a^{2} b-12 a c$				
- I know how to factorise an expression using a difference of two squares. Factorise the following: $\quad x^{2}-y^{2} \quad t^{2}-36 \quad 9 x^{2}-y^{2}$	$64-49 y^{2}$			
- I know how to factorise an expression using a common factor and a difference of tw Factorise the following: $5 x^{2}-20 y^{2}$				
- I know that a trinomial expression is of the form $a x^{2}+b x+c$.				
- I know how to factorise a trinomial expression of the form $x^{2}+b x+c$. Factorise the following: $x^{2}+6 x+8$ $x^{2}-x-6$ $x^{2}+5 x-6$	$x^{2}-5 x-6$			

| Learning Intention I can complete the square in a quadratic expression with unitary x^{2} coefficient. | | |
| :--- | :--- | :--- | :--- |
| Success Criteria | :() | : |
| - I know how to express $x^{2}+b x+c$ in the form $(x+p)^{2}+q$ where $p=b \div 2$ and $q=c-p^{2}$ | | |
| Express $x^{2}+6 x-2$ and $x^{2}-8 x+4$ in the form $(x+p)^{2}+q$. | | |

Learning Intention I can reduce an algebraic fraction to its simplest form.							
Success Criteria					()	-	©
- I can simplify fractions.	Simplify the following: $\frac{7}{21}$	$\frac{27}{63}$					
- I can simplify algebraic fractions	Simplify the following: $\frac{x^{2}}{x^{5}}$	$\frac{10 y^{7}}{15 y^{4}}$	$\frac{(y+2)(y-3)}{(y-3)(y-4)}$	$\frac{x^{2}-4}{2 x+4}$			

Learning Intention I can carry out calculations with algebraic fractions.

Success Criteria

- I can add, subtract, multiply and divide fractions.
Evaluate
$3 \frac{2}{5}+1 \frac{1}{3}$,
$2 \frac{3}{4} \times 1 \frac{1}{5}$
and
$2 \frac{1}{3} \div 1 \frac{3}{4}$.
- I can add and subtract algebraic fractions.
Simplify the following:

$$
\frac{x}{2}-\frac{x}{3}
$$

$$
\frac{5}{x}+\frac{2}{y}
$$

$$
\frac{t}{x}-\frac{3}{y}
$$

and

$$
\frac{x+1}{2}+\frac{x-1}{3} .
$$

- I can multiply and divide algebraic fractions.
Simplify the following:
$\frac{t}{5} \times \frac{3}{y}$,
$\frac{t}{15} \times \frac{25}{t^{2}}$
and $\quad \frac{x}{7} \div \frac{x^{3}}{14}$.

Learning Intention I can calculate the gradient of a straight line, given two points.			
Success Criteria	©	©	©
- I can calculate the gradient of a line using vertical and horizontal distances. $\text { Gradient }=\frac{\text { vertical height }}{\text { horizontal distance }}$ height			
- I can recognise lines with positive / and negative \ gradients.			
- I can recognise lines with zero - and undefined \mid gradients.			
- I know that parallel lines have equal gradients. \nearrow ¢			
- I know that the gradient formula is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.			
- I know how to use the gradient formula. Calculate the gradient of the line joining $A(1,-7)$ and $B(4,3)$. Calculate the gradient of the line joining $C(2,-3)$ and $D(8,-3)$. Calculate the gradient of the line joining $E(4,5)$ and $F(4,3)$.			

Learning Intention I can use and interpret straight line equations.			
Success Criteria	()	-	©
- I can use and interpret the straight line equation $y=m x+c$. (1) Write down the gradient of the line $y=2 x-4$ and the coordinates (2) Sketch the lines with equation $\quad y=-x+3, y=2$ and $x=-4$. (3) Find the equation of the straight lines shown in the diagram.			
- I know that $y-b=m(x-a)$ represents a straight line with gradient m , passing through the point (a, b).			
- I can determine the equation of a straight line using $y-b=m(x-a)$. Find the equation of the straight lines which pass through the point: (a) $(1,5)$ with a gradient of 2 (b) $(-4,3)$ with a gradient of 5			
- I can determine the equation of a straight line using two points which lie on the line. Find the equation of the line joining $A(-2,-8)$ and $B(3,2)$.			

Learning Intention I can calculate the volume of a standard solid rounding my answer appropriately.			
Success Criteria	()	-	(
- I can calculate the volume of any solid given its formula. $V=\pi r^{2} h$ sphere pyramid $V=\frac{4}{3} \pi r^{3}$ $V=\frac{1}{3} \pi r^{2} h$ $V=\frac{1}{3} A h$ The football has a diameter of 30 cm . Calculate its volume, take $\pi=3 \cdot 14$.(non-calculator example)			
- I can solve problems rounding my final answer using significant figures. A child's toy is in the shape of a hemisphere with a cone on top, as shown. The toy is 10 cm wide and 16 cm high. Calculate the volume of the toy. Give your answer correct to 2 significant figures.			

Learning Intention I can use and apply the Theorem of Pythagoras.

Success Criteria

- I can solve problems by applying the Theorem of Pythagoras to 2D and 3D shapes
by identifying and drawing a right angled triangle and labelling the sides appropriately.

In the cuboid shown opposite.
(a) Calculate the length of the face diagonal AC.
(b) Hence calculate the length of the space diagonal AG.

- I know when to use the converse of the Theorem of Pythagoras.
- I know how to use the converse of the Theorem of Pythagoras and can communicate my solution and conclusion correctly.

A rectangular picture frame is to be made.
It is 30 centimetres high and 22.5 centimetres wide, as shown.
To check that the frame is rectangular, the diagonal, d , is measured.
It is 37.3 centimetres long. Is the frame rectangular?

Learning Intention I can use trigonometry in right angled triangles to calculate an angle or a side.			
Success Criteria	()	-	(\%)
- I know that the three sides in a right angled triangle are called the opposite, adjacent and hypotenuse.			
- Given an angle, I can draw and label the 3 sides of a right angled triangle correctly.			
- I can use "SOH CAH TOA" to determine the correct ratio.			
- I know how to calculate an angle given 2 sides. Calculate the size of angle x°.			
- I know how to calculate a side given an angle and a side. Calculate the length of side X.			

