

## **Cumbernauld Academy Maths Department**



## S3 Level 4/5 Revision Booklet

ACADEMY

| Learning Intention I can simplify and carry out calculations using surds.                                                                                                                              |   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| Success Criteria                                                                                                                                                                                       | 0 | 8 |
| • I know how to find the square, square root, cube or cube root of numbers. Evaluate $3^2 \sqrt{49} 10^3 \sqrt[3]{64}$                                                                                 |   |   |
| I can identify surds.                                                                                                                                                                                  |   |   |
| • I know that $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ , $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ , $\sqrt{a} \times \sqrt{a} = a$ and $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ .                  |   |   |
| • I know how to fully simplify surds. Show that $\sqrt{75} = 5\sqrt{3}$ Simplify $\sqrt{72}$                                                                                                           |   |   |
| • I can add and subtract surds.<br>Simplify $2\sqrt{5} + 7\sqrt{5}$ , $\sqrt{75} - \sqrt{48}$ and $\sqrt{75} - \sqrt{27}$ . Express $\sqrt{12} - \sqrt{3} + \sqrt{48}$ as a surd in its simplest form. |   |   |
| • I can multiply surds. Expand and simplify $\sqrt{3}(\sqrt{3}-1)$ $\sqrt{2}(3-\sqrt{6})$ $(2+\sqrt{2})(3+\sqrt{2})$ $(2\sqrt{5})(2\sqrt{5}-1)$                                                        |   |   |

| Learning Intention I can simplify and evaluate expressions using the laws of indices. |                           |                  |                    |   |   |   |   |
|---------------------------------------------------------------------------------------|---------------------------|------------------|--------------------|---|---|---|---|
| Success Criteria                                                                      |                           |                  |                    | G | 9 | ☺ | 8 |
| • I know that $3^4 = 3 \times 3 \times 3 \times 3$ and 3 i                            | s the base value and 4 is | s the index v    | value.             |   |   |   |   |
| • I know that $a^m \times a^n = a^{m+n}$                                              | Simplify                  | $x^4 \times x^5$ | $3x^7 \times 5x^2$ |   |   |   |   |
| • I know that $a^m \div a^n = a^{m-n}$                                                | Simplify                  | $x^8 \div x^5$   | $x^2 \div x^{-3}$  |   |   |   |   |
| • I know that $(a^m)^n = a^{mn}$                                                      | Simplify                  | $(2a^3)^4$       | AN IN              |   |   |   |   |
|                                                                                       | A D F                     | DE               | M .                |   |   | I |   |

| • I know that $a^0 = 1$                | Simplify $5^0$ $(3ab^2)^0$                                           |  |  |
|----------------------------------------|----------------------------------------------------------------------|--|--|
| I can simplify expressions of the form | $\frac{x^5 \times x^4}{x^{-2}} \qquad 6x^2 \times 2x^{-\frac{1}{3}}$ |  |  |

| Learning Intention         I can carry out calculations using scientific notation.                                                          |         |   |   |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------|---|---|
| Success Criteria                                                                                                                            | $\odot$ | : | 8 |
| • I can write large and small numbers in scientific notation. $1820000 = 1 \cdot 82 \times 10^6$ $0 \cdot 00049 = 4 \cdot 9 \times 10^{-4}$ |         |   |   |
| • I can carry out calculations using scientific notation. Calculate $(1 \cdot 2 \times 10^5) \times (9 \times 10^7)$                        |         |   |   |
| I can use my calculator to carry out calculations using values in scientific notation.                                                      |         |   |   |
| There are $5 	imes 10^9$ red blood cells in 1 millilitre of blood. The average person has 5.5 litres of blood.                              |         |   |   |
| How many red blood cells does the average person have in their blood? Give your answer in scientific notation.                              |         |   |   |

| Learning Intention I can simplify algebraic expressions involvi    | ng the expansion of | of brackets.              |         |          |   |
|--------------------------------------------------------------------|---------------------|---------------------------|---------|----------|---|
| Success Criteria                                                   |                     |                           | $\odot$ | <b>:</b> | 8 |
| • I know how to expand a bracket and simplify: $3+4(b-2)$          | 4c - (c - 3)        | 4(2t+1) + 5(3t-2)         |         |          |   |
| • I know how to expand a bracket of the form: $2t(3t+1)$           | 7g(6-g)             |                           |         |          |   |
| • I know how to expand pairs of brackets with 2 linear expressions | s: $(x+3)(x+5)$     | $(4y+1)(3y-2)$ $(3x-4)^2$ |         |          |   |
| • I know how to expand brackets with a linear and a quadratic exp  | pression: (4-       | $(y+1)(3y^2+5y-2)$        |         |          |   |

| Learning Intention I can factoris    | e an algebraic expression.                                 |   |   |   |
|--------------------------------------|------------------------------------------------------------|---|---|---|
| Success Criteria                     | MBERNAUL                                                   | 0 | • | 8 |
| I can factorise an expression by fin | ding the Highest Common Factor (HCF).                      |   |   |   |
| Factorise the following:             | $21-35x \qquad 8a^2b-12ac$                                 |   |   |   |
| • I know how to factorise an express | ion using a difference of two squares.                     |   |   |   |
| Factorise the following:             | $x^2 - y^2$ $t^2 - 36$ $9x^2 - y^2$ $64 - 49y^2$           |   |   |   |
| • I know how to factorise an express | ion using a common factor and a difference of two squares. |   |   |   |
| Factorise the following:             | $5x^2 - 20y^2$                                             |   |   |   |
| I know that a trinomial expression   | is of the form $ax^2 + bx + c$ .                           |   |   |   |
| I know how to factorise a trinomia   | expression of the form $x^2 + bx + c$ .                    |   |   |   |
| Factorise the following:             | $x^{2}+6x+8$ $x^{2}-x-6$ $x^{2}+5x-6$ $x^{2}-5x-6$         |   |   |   |

| <b>Learning Intention</b> I can complete the square in a quadratic expression with unitary $x^2$ coefficient. |         |   |   |
|---------------------------------------------------------------------------------------------------------------|---------|---|---|
| Success Criteria                                                                                              | $\odot$ | • | 8 |
| • I know how to express $x^2 + bx + c$ in the form $(x + p)^2 + q$ where $p = b \div 2$ and $q = c - p^2$     |         |   |   |
| Express $x^{2} + 6x - 2$ and $x^{2} - 8x + 4$ in the form $(x + p)^{2} + q$ .                                 |         |   |   |



| Learning Intention I can reduce an algebraic fraction to its simplest form. |                         |                   |                       |                                 |                      |         |    |         |
|-----------------------------------------------------------------------------|-------------------------|-------------------|-----------------------|---------------------------------|----------------------|---------|----|---------|
| Success Criteria                                                            | MBE                     |                   | 10,                   |                                 |                      | $\odot$ | () | $\odot$ |
| • I can simplify fractions.                                                 | Simplify the following: | $\frac{7}{21}$    | $\frac{27}{63}$       |                                 |                      |         |    |         |
| • I can simplify algebraic fractions.                                       | Simplify the following: | $\frac{x^2}{x^5}$ | $\frac{10y^7}{15y^4}$ | $\frac{(y+2)(y-3)}{(y-3)(y-4)}$ | $\frac{x^2-4}{2x+4}$ |         |    |         |
|                                                                             |                         |                   |                       |                                 |                      |         |    |         |

| Learning Intention I ca      | in carry out cald                  | culations with algebraid                                      | fractions. |                                    |   |   |
|------------------------------|------------------------------------|---------------------------------------------------------------|------------|------------------------------------|---|---|
| Success Criteria             |                                    |                                                               |            |                                    | ٢ | 8 |
| • I can add, subtract, multi | ply and divide f                   | ractions.                                                     |            |                                    |   |   |
| Evaluate                     | $3\frac{2}{5}+1\frac{1}{3}$ ,      | $2\frac{3}{4} \times 1\frac{1}{5}$                            | and        | $2\frac{1}{3} \div 1\frac{3}{4}.$  |   |   |
| I can add and subtract alg   | gebraic fraction                   | s.                                                            |            |                                    |   |   |
| Simplify the following:      | $\frac{x}{2} - \frac{x}{3},$       | $\frac{5}{x} + \frac{2}{y}, \qquad \frac{t}{x} - \frac{3}{y}$ | and        | $\frac{x+1}{2} + \frac{x-1}{3}.$   |   |   |
| • I can multiply and divide  |                                    |                                                               |            |                                    |   |   |
| Simplify the following:      | $\frac{t}{5} \times \frac{3}{y} ,$ | $\frac{t}{15} \times \frac{25}{t^2}$                          | and        | $\frac{x}{7} \div \frac{x^3}{14}.$ |   |   |



| Learning IntentionI can calculate the gradient of a straight line, given two points.                                                                                                                             |   |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| Success Criteria                                                                                                                                                                                                 | 0 | 8 |
| <ul> <li>I can calculate the gradient of a line using vertical and horizontal distances.</li> <li>Gradient = vertical height<br/>horizontal distance</li> <li>vertical height<br/>horizontal distance</li> </ul> |   |   |
| I can recognise lines with positive / and negative gradients.                                                                                                                                                    |   |   |
| I can recognise lines with zero — and undefined gradients.                                                                                                                                                       |   |   |
| <ul> <li>I know that parallel lines have equal gradients. イイイ</li> </ul>                                                                                                                                         |   |   |
| • I know that the gradient formula is $m = \frac{y_2 - y_1}{x_2 - x_1}$ .                                                                                                                                        |   |   |
| I know how to use the gradient formula.                                                                                                                                                                          |   |   |
| Calculate the gradient of the line joining $A(1,-7)$ and $B(4,3)$ .                                                                                                                                              |   |   |
| Calculate the gradient of the line joining $C(2,-3)$ and $D(8,-3)$ .                                                                                                                                             |   |   |
| Calculate the gradient of the line joining $E(4,5)$ and $F(4,3)$ .                                                                                                                                               |   |   |



| Learning Intention         I can use and interpret straight line equations.                                                                               |   |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| Success Criteria                                                                                                                                          | 0 | 8 |
| • I can use and interpret the straight line equation $y = mx + c$ .                                                                                       |   |   |
| (1) Write down the gradient of the line $y = 2x - 4$ and the coordinates of the point where it crosses the y-axis.                                        |   |   |
| (2) Sketch the lines with equation $y = -x + 3$ , $y = 2$ and $x = -4$ .                                                                                  |   |   |
| (3) Find the equation of the straight lines shown in the diagram.                                                                                         |   |   |
| • I know that $y-b=m(x-a)$ represents a straight line with gradient m, passing through the point $(a,b)$ .                                                |   |   |
| • I can determine the equation of a straight line using $y-b=m(x-a)$ .                                                                                    |   |   |
| Find the equation of the straight lines which pass through the point:                                                                                     |   |   |
| (a) $(1,5)$ with a gradient of 2 (b) $(-4,3)$ with a gradient of 5                                                                                        |   |   |
| • I can determine the equation of a straight line using two points which lie on the line.<br>Find the equation of the line joining A(-2, -8) and B(3, 2). |   |   |







| Learning Intention I can solve linear equations and inequations.                                                                                                                                                                                    |         |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|
| Success Criteria                                                                                                                                                                                                                                    | $\odot$ | 6 |
| • I can solve linear equations.<br>Solve $3x + 5 = 17$ $8x - 11 = 5$ $5x - 1 = 2x + 23$ $7x + 11 = 4x - 19$                                                                                                                                         |         |   |
| • I can solve equations involving brackets. Solve $3(x-5) = 21$ $5(x+7) - 2(3x-4) = 45$                                                                                                                                                             |         |   |
| • I can solve inequations.<br>Solve $5x + 3 < 12$ $7x - 2 > 10x + 4$ $10 - 2(x + 3) > 3(x - 2)$                                                                                                                                                     |         |   |
| Learning Intention I can solve problems using simultaneous linear equations.                                                                                                                                                                        |         |   |
| Success Criteria                                                                                                                                                                                                                                    | 0       | 8 |
| • I know how to solve systems of equations algebraically using <b>substitution</b> or <b>elimination</b> .<br>Solve <b>algebraically</b> the system of equations (a) $3x + y = 10$ (b) $3x - 2y = 11$<br>5x - 2y = 13 (b) $3x - 2y = 112x + 5y = 1$ |         |   |
| I know how to create and solve systems of equations algebraically.                                                                                                                                                                                  |         |   |
| Seats on flights from London to Edinburgh are sold at two prices, £30 and £50.On one flight a total of 130 seats were sold. Let x be the number of seats sold                                                                                       |         |   |
| at £30 and y be the number of seats sold at £50.                                                                                                                                                                                                    |         |   |
| (a) Write down an equation in x and y which satisfies the above condition.                                                                                                                                                                          |         |   |
| The sale of the seats on this flight totalled £6000.<br>(b) Write down an equation in x and y which satisfies this condition                                                                                                                        |         |   |
| (c) How many seats were sold at each price?                                                                                                                                                                                                         |         |   |





