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Unit 2: Applications in Algebra and Calculus (H7X1 77) 
 
Applying Algebraic Skills to Summation and Mathematical Proof 
 

 

Proof by Induction: Statement is made about . . . 

 Shown that it works for an initial value 𝑛 = 𝑎 (usually 𝑛 = 1) 
 

 Next assume statement is true for 𝑛 = 𝑘 and get an expression 

 

 Prove that it is true for 𝑛 = 𝑘 + 1 using algebraic manipulation. 
 

 

 Conclude that if true for 𝑛 = 𝑘 then true for 𝑛 = 𝑘 + 1 and 

since true for 𝑛 = 𝑎, then true for all 𝑛. 

 

Summation Formulae (Series): 
 

 Prove by induction that 1 + 2 + 3 + ⋯ =
𝑛

2
(𝑛 + 1)  i.e. 

∑ 𝑟

𝑛

𝑟=1

=
𝑛

2
(𝑛 + 1),   𝑛 ≥ 1, 𝑛 ∈ ℕ 

 

 

Step 1: Let 𝑛 = 1:     True 

  

Step 2: Assume true for 𝑛 = 𝑘, expression is:    

 

Step 3: Get the similar expression for 𝑘 + 1:  

 

This answer is our target! 

 

Step 4: Get alternative expression for 𝑘 + 1 using answer to Step 2 plus 

(𝑘 + 1)𝑠𝑡 term and show they are the same: 

 

 

 

∑ 𝑟

1

𝑟=1

=
1

2
(1 + 1) = 1 

∑ 𝑟

𝑘

𝑟=1

=
𝑘

2
(𝑘 + 1) 

∑ 𝑟

𝑘+1

𝑟=1

=
𝑘 + 1

2
(𝑘 + 1 + 1) =

1

2
(𝑘 + 1)(𝑘 + 2) 

∑ 𝑟

𝑘

𝑟=1

+ (𝑘 + 1) =
𝑘

2
(𝑘 + 1) + (𝑘 + 1) = [𝑘 + 1] (

𝑘

2
+ 1) =

1

2
(𝑘 + 1)(𝑘 + 2) 
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Step 5: Write a conclusion: 

If true for 𝑛 = 𝑘 then true for 𝑛 = 𝑘 + 1 and since true for 𝑛 = 1, 

then by induction, it is true ∀𝑛 ≥ 1, 𝑛 ∈ ℕ. 

 

 Prove by induction that 1 + 4 + 9 + 16 + ⋯ =
𝑛(𝑛+1)(2𝑛+1)

6
 i.e. 

∑ 𝑟2

𝑛

𝑟=1

=
𝑛(𝑛 + 1)(2𝑛 + 1)

6
,    𝑛 ≥ 1, 𝑛 ∈ ℕ 

 

 

Step 1: Let 𝑛 = 1:      True 

  

Step 2: Assume true for 𝑛 = 𝑘:    

 

Step 3: Get similar expression for 𝑘 + 1:  

 

 

 

Step 4: Get alternative expression for 𝑘 + 1 using answer to 2 plus 

(𝑘 + 1)𝑠𝑡 term and show that they the are the same:  

 

 

 

 

 

NB – Algebra usually only worth 1 mark so if it’s not working out then 

have a Eureka moment as the last mark is normally the conclusion!! 

 

Step 5: Write conclusion: 

If true for 𝑛 = 𝑘 then true for 𝑛 = 𝑘 + 1 and since true for 𝑛 = 1, 

then by induction, it is true ∀𝑛 ≥ 1, 𝑛 ∈ ℕ. 

∑ 𝑟2

1

𝑟=1

=
1(1 + 1)(2 + 1)

6
=

6

6
= 1 

 

∑ 𝑟2

𝑘

𝑟=1

=
𝑘(𝑘 + 1)(2𝑘 + 1)

6
 

∑ 𝑟

𝑘+1

𝑟=1

=
(𝑘 + 1)(𝑘 + 1 + 1)(2(𝑘 + 1) + 1)

6
=

1

6
(𝑘 + 1)(𝑘 + 2)(2𝑘 + 3) 

∑ 𝑟2

𝑘

𝑟=1

+ (𝑘 + 1)2 =
𝑘(𝑘 + 1)(2𝑘 + 1)

6
+ (𝑘 + 1)2 = [

𝑘 + 1

6
] [𝑘(2𝑘 + 1) + 6(𝑘 + 1)]

= [
𝑘 + 1

6
] [2𝑘2 + 𝑘 + 6𝑘 + 6] =

1

6
(𝑘 + 1) (2𝑘2 + 7𝑘 + 6)

=
1

6
(𝑘 + 1)(𝑘 + 2)(2𝑘 + 3) 
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Use proof by induction to show that ∀𝑛 ≥ 1, 𝑛 ∈ ℕ: 

 

1.        2. 

 

 

3.       4. 

 

 

Multiple of/Divisible by: 
 

 Prove by induction that 𝑛3 + 2𝑛 is divisible by 3, ∀𝑛 ∈ ℕ. 

 

Step 1: Let 𝑛 = 1: 𝑛3 + 2𝑛 = 13 + 2 × 1 = 3,     3|3    True 

 

Step 2: Assume true for 𝑛 = 𝑘 and make expression a multiple of 3: 

3|𝑘3 + 2𝑘 ⇒ 𝑘3 + 2𝑘 = 3𝑚, 𝑚 ∈ ℕ   

 

Step 3: Get expression for 𝑘 + 1:  

𝑛3 + 2𝑛 = (𝑘 + 1)3 + 2(𝑘 + 1) = 𝑘3 + 3𝑘2 + 3𝑘 + 1 + 2𝑘 + 2 

 

Step 4: Now re-arrange the expression for 𝑛 = 𝑘 + 1 to look like 

the answer for 𝑛 = 𝑘 plus any extra terms. These terms 

should have the required divisor as a common factor:  

 

𝑘3 + 3𝑘2 + 3𝑘 + 1 + 2𝑘 + 2 = 𝒌𝟑 + 𝟐𝒌 + 3𝑘2 + 3𝑘 + 3 

(𝑘 + 1)3 + 2(𝑘 + 1) = 3𝑚 + 3𝑘2 + 3𝑘 + 3 = 3(𝑚 + 𝑘2 + 𝑘 + 1) 

True 

Step 5: Write conclusion: 

If true for 𝑛 = 𝑘 then true for 𝑛 = 𝑘 + 1 and since true for 𝑛 = 1, then 

by induction, it is true ∀𝑛 ∈ ℕ. 

 

Reminder: For divisible by 6, show divisible by 2 and 

divisible by 3 thus . .  

 

∑(3𝑟 − 1)

𝑛

𝑟=1

=
𝑛

2
(3𝑛 + 1) 

∑ 𝑟(𝑟 + 1)

𝑛

𝑟=1

=
1

3
𝑛(𝑛 + 1)(𝑛 + 2) 

∑(2𝑟 + 1)

𝑛

𝑟=1

= 𝑛(𝑛 + 2) 

∑
1

𝑟(𝑟 + 1)

𝑛

𝑟=1

=
𝑛

𝑛 + 1
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 Prove by induction that 9𝑛 + 7 is divisible by 8, ∀𝑛 ∈ ℕ. 

 

Step 1: Let 𝑛 = 1: 91 + 7 = 9 + 7 = 16,     8|16    True 

 

Step 2: Assume true for 𝑛 = 𝑘: 8|9𝑛 + 7 ⇒ 9𝑛 + 7 = 8𝑚, 𝑚 ∈ ℕ   

 

Step 3: Get expression for 𝑘 + 1:   9(𝑘+1) + 7 

 

Step 4: Now re-arrange the expression to look like the answer for 

𝑛 = 𝑘 using the laws of indices:  

 

9(𝑘+1) + 7 = 9𝑘 × 9 + 7 = 9𝑘 × (8 + 1) + 7 

Multiply out the bracket: 8 × 9𝑘 + 1 × 9𝑘 + 7 = 8 × 9𝑘 + 𝟗𝒌 + 𝟕 

9(𝑘+1) + 7 = 8 × 9𝑘 + 𝟖𝒎 = 8(9𝑘 + 𝑚) 

True 

Step 5: Write conclusion: 

If true for 𝑛 = 𝑘 then true for 𝑛 = 𝑘 + 1 and since true for 𝑛 = 1, then 

by induction, it is true ∀𝑛 ∈ ℕ. 

 

Prove by induction that: 

 

1.    3|𝑛3 − 𝑛   2.  6|𝑛3 − 𝑛 

 

3. 10|6𝑛 + 4   4.  4|5𝑛 + 3 

 

6. 64|9𝑛 − 8𝑛 − 1  7.  5|8𝑛 + 3𝑛−2 

 

Left Field: 
 DeMoivre (2012 Q16) 

 Binomial (2015 Q9) 

 Matrices (2006 Q13) 

 nth Derivative (2004 Q12) 

 Greater or Less Than (2007 Q12) 

 

Bk 3 P141 Ex3A 

Q1, 3, 5, 7 

 

Bk 3 P141 Ex3B 

Q1 
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(𝑥 + 𝑦)1 = ∑ (
1
𝑟

) 𝑥1−𝑟𝑦𝑟

𝑛

𝑟=0

= (
1
0

) 𝑥1−0𝑦0 + (
1
1

) 𝑥1−1𝑦1 = 𝑥 + 𝑦 

DeMoivre: 
 

 Prove by induction that if 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) then 𝑧𝑛 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃) 

Step 1: Let 𝑛 = 1: 𝑧1 = 𝑟1(cos 1𝜃 + 𝑖 sin 1𝜃) = 𝑟(cos 𝜃 + 𝑖 sin 𝜃)  True 

 

Step 2: Assume true for 𝑛 = 𝑘: 𝑧𝑘 = 𝑟𝑘(cos 𝑘𝜃 + 𝑖 sin 𝑘𝜃)   

 

Step 3: Get expression for 𝑘 + 1:  𝑧𝑘+1 = 𝑟𝑘+1(cos(𝑘 + 1)𝜃 + 𝑖 sin(𝑘 + 1)𝜃) 

 

Step 4: Using the laws of indices and compound angle formulae: 

𝑧𝑘+1 = 𝑧𝑘 × 𝑧1 

 

𝑧𝑘+1 = 𝑟𝑘(cos 𝑘𝜃 + 𝑖 sin 𝑘𝜃) + 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 

 

𝑧𝑘+1 = 𝑟𝑘+1(cos 𝑘𝜃 cos 𝜃 + 𝑖 cos 𝑘𝜃 sin 𝜃 + 𝑖 sin 𝑘𝜃 cos 𝜃 + 𝑖2 sin 𝑘𝜃 sin 𝜃) 

 

𝑧𝑘+1 = 𝑟𝑘+1(cos 𝑘𝜃 cos 𝜃 − sin 𝑘𝜃 sin 𝜃 + 𝑖 sin 𝑘𝜃 cos 𝜃 + 𝑖 cos 𝑘𝜃 sin 𝜃) 

 

𝑧𝑘+1 = 𝑟𝑘+1(cos(𝑘 + 1)𝜃 + 𝑖 sin(𝑘 + 1)𝜃) 

 

Step 5: Write conclusion: 

If true for 𝑛 = 𝑘 then true for 𝑛 = 𝑘 + 1 and since true for 𝑛 = 1, then 

by induction, it is true ∀𝑛 ∈ ℕ. 

 

 

Binomial Theorem: 
 

 Prove by induction that   

 

 

Step 1: Let 𝑛 = 1: 

 (𝑥 + 𝑦)1 = 𝑥 + 𝑦  True 

 

 

Step 2: Assume true for 𝑛 = 𝑘:  

 

 

(𝑥 + 𝑦)𝑛 = ∑ (
𝑛
𝑟

) 𝑥𝑛−𝑟𝑦𝑟

𝑛

𝑟=0

 

(𝑥 + 𝑦)𝑘 = ∑ (
𝑘
𝑟

) 𝑥𝑘−𝑟𝑦𝑟

𝑛

𝑟=0
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(𝑥 + 𝑦)𝑘+1 = ∑ (
𝑘 + 1

𝑟
) 𝑥𝑘+1−𝑟𝑦𝑟

𝑛

𝑟=0

 Step 3: Get expression for 𝑘 + 1:  

 

Step 4: Using the laws of indices: 

(𝑥 + 𝑦)𝑘+1 = (𝑥 + 𝑦)𝑘 × (𝑥 + 𝑦)1 

 

(𝑥 + 𝑦)𝑘+1 = (𝑥 + 𝑦) ∑ (
𝑘

𝑟
) 𝑥𝑘−𝑟𝑦𝑟

𝑛

𝑟=0

 

 

(𝑥 + 𝑦)𝑘+1 = 𝑥 ∑ (
𝑘

𝑟
) 𝑥𝑘−𝑟𝑦𝑟

𝑛

𝑟=0

+ 𝑦 ∑ (
𝑘

𝑟
) 𝑥𝑘−𝑟𝑦𝑟

𝑛

𝑟=0

 

 

= 𝑥 (
𝑘

0
) 𝑥𝑘𝑦0 + 𝑥 (

𝑘

1
) 𝑥𝑘−1𝑦1 + 𝑥 (

𝑘

2
) 𝑥𝑘−2𝑦2 + ⋯ + 𝑦 (

𝑘

0
) 𝑥𝑘𝑦0 + 𝑦 (

𝑘

1
) 𝑥𝑘−1𝑦1 + 𝑦 (

𝑘

2
) 𝑥𝑘−2𝑦2 + ⋯ 

 

= (
𝑘

0
) 𝑥𝑘+1𝑦0 + (

𝑘

1
) 𝑥𝑘𝑦1 + (

𝑘

2
) 𝑥𝑘−1𝑦2 + ⋯ + (

𝑘

0
) 𝑥𝑘+1𝑦0 + (

𝑘

1
) 𝑥𝑘𝑦1 + (

𝑘

2
) 𝑥𝑘−1𝑦2 + ⋯ 

 

= (
𝑘

0
) 𝑥𝑘+1 + [(

𝑘

0
) + (

𝑘

1
)] 𝑥𝑘𝑦 + [(

𝑘

1
) + (

𝑘

2
)] 𝑥𝑘−1𝑦2 + ⋯ + (

𝑘

𝑘
) 𝑦𝑘+1 

 

From (
𝑛

𝑟 − 1
) + (

𝑛
𝑟

) = (
𝑛 + 1

𝑟
) we get that (

𝑘
0

) + (
𝑘
1

) = (
𝑘 + 1

1
), (

𝑘
1

) + (
𝑘
2

) = (
𝑘 + 1

2
), etc 

 

So: 

(
𝑘
0

) 𝑥𝑘+1 + [(
𝑘
0

) + (
𝑘
1

)] 𝑥𝑘𝑦 + [(
𝑘
1

) + (
𝑘
2

)] 𝑥𝑘−1𝑦2 + ⋯ + (
𝑘
𝑘

) 𝑦𝑘+1

= (
𝑘
0

) 𝑥𝑘+1 + (
𝑘 + 1

1
) 𝑥𝑘𝑦 + (

𝑘 + 1
2

) 𝑥𝑘−1𝑦2 + ⋯ + (
𝑘
𝑘

) 𝑦𝑘+1 

 

From (
𝑘
0

) = (
𝑘 + 1

0
) = 1 and (

𝑘
𝑘

) = (
𝑘 + 1
𝑘 + 1

) = 1 

(
𝑘
0

) 𝑥𝑘+1 + (
𝑘 + 1

1
) 𝑥𝑘𝑦 + (

𝑘 + 1
2

) 𝑥𝑘−1𝑦2 + ⋯ + (
𝑘
𝑘

) 𝑦𝑘+1

= (
𝑘 + 1

0
) 𝑥𝑘+1 + (

𝑘 + 1
1

) 𝑥𝑘𝑦 + (
𝑘 + 1

2
) 𝑥𝑘−1𝑦2 + ⋯ + (

𝑘 + 1
𝑘 + 1

) 𝑦𝑘+1 

= ∑ (
𝑘 + 1

𝑟
) 𝑥𝑘+1−𝑟𝑦𝑟

𝑛

𝑟=0

 

True 

Step 5: Write conclusion: 

If true for 𝑛 = 𝑘 then true for 𝑛 = 𝑘 + 1 and since true for 𝑛 = 1, then 

by induction, it is true ∀𝑛 ∈ ℕ. 
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 Prove by induction that  (𝑛 + 2
3

) − (
𝑛
3

) = 𝑛2 for integers 𝑛 ≥ 3 

 

Let 𝑛 = 3: (
3 + 2

3
) − (

3
3

) =
(3+2)!

(3+2−3)!3!
−

3!

(3−3)!3!
=

120

12
−

6

6
= 9 = 32 

True

Assume true for 𝑛 = 𝑘:  (
𝑘 + 2

3
) − (

𝑘
3

) = 𝑘2 

 

Expression for 𝑘 + 1: (
𝑘 + 1 + 2

3
) − (

𝑘 + 1
3

) = (
𝑘 + 3

3
) − (

𝑘 + 1
3

) = (𝑘 + 1)2




From (
𝑛

𝑟 − 1
) + (

𝑛
𝑟

) = (
𝑛 + 1

𝑟
) we get (

𝑘 + 3
3

) = (
𝑘 + 2

2
) + (

𝑘 + 2
3

) 

and (
𝑘 + 1

3
) = (

𝑘
2

) + (
𝑘
3

) 

So (
𝑘 + 3

3
) − (

𝑘 + 1
3

) = (
𝒌 + 𝟐

𝟐
) + (

𝑘 + 2
3

) − (
𝑘
2

) − (
𝒌
𝟑

) = 𝑘2 + (
𝑘 + 2

2
) − (

𝑘
2

)

(
𝑘 + 2

2
) =

(𝑘 + 2)!

(𝑘 + 2 − 2)! 2!
=

(𝑘 + 2)(𝑘 + 1)𝑘 …

𝑘(𝑘 − 1) … 2
=

(𝑘 + 2)(𝑘 + 1)

2


(
𝑘
2

) =
(𝑘)!

(𝑘 − 2)! 2!
=

𝑘(𝑘 − 1)(𝑘 − 2) …

(𝑘 − 2)(𝑘 − 1) … 2
=

𝑘(𝑘 − 1)

2


(
𝑘 + 2

2
) − (

𝑘
2

) =
(𝑘 + 2)(𝑘 + 1)

2
−

𝑘(𝑘 − 1)

2
=

𝑘2 + 3𝑘 + 2 − 𝑘2 + 𝑘

2
= 2𝑘 + 1

𝑘2 + (
𝑘 + 2

2
) − (

𝑘
2

) = 𝑘2 + 2𝑘 + 1 = (𝑘 + 1)2
True 



If true for 𝑛 = 𝑘 then true for 𝑛 = 𝑘 + 1 and since true for 𝑛 = 1, then by 

induction, it is true ∀𝑛 ∈ ℕ. 
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Matrices: 


 For 𝐴 = (
1 0

−1 2
), use induction to prove that 𝐴𝑛 = (

1 0
1 − 2𝑛 2𝑛) for all 

positive integers. 
 

  Let 𝑛 = 1: 𝐴1 = (
1 0

1 − 21 21) = 𝐴𝑛 = (
1 0

1 − 2 2
) = (

1 0
−1 2

) 

True

Assume true for 𝑛 = 𝑘:  𝐴𝑘 = (
1 0

1 − 2𝑘 2𝑘) 

 

Expression for 𝑘 + 1: 𝐴𝑘+1 = (
1 0

1 − 2𝑘+1 2𝑘+1) 

 

Using the laws of indices:   𝐴𝑘+1 = 𝐴𝑘𝐴1 
 

𝐴𝑘𝐴1 = (
1 0

1 − 2𝑘 2𝑘) (
1 0

−1 2
) = (

1 + 0 × −1 0 + 0 × 2
(𝟏 − 𝟐𝒌) × 𝟏 − 𝟏 × 𝟐𝒌 0 + 2𝑘 × 2

) 

 

NB - (𝟏 − 𝟐𝒌) × 𝟏 − 𝟏 × 𝟐𝒌 = 1 − 2𝑘 − 2𝑘 = 1 − 2 × 2𝑘 = 1 − 2𝑘+1 

 

So 𝐴𝑘𝐴1 = (
1 0

1 − 2𝑘+1 2𝑘+1) 

True 

If true for 𝑛 = 𝑘 then true for 𝑛 = 𝑘 + 1 and since true for 𝑛 = 1, 

then by induction, it is true ∀𝑛 ∈ ℕ. 

 

Smaller or Larger than: 
 

 Prove by induction that 2𝑛 > 𝑛, 𝑛 ≥ 1, 𝑛 ∈ ℕ. 

 

Let 𝑛 = 1: 21 = 2 which is greater than 1 

True

Assume true for 𝑛 = 𝑘:  2𝑘 > 𝑘 

Expression for 𝑘 + 1: 2𝑘+1 > 𝑘 + 1 

Using the laws of indices:  2𝑘+1 = 2𝑘 × 2 ⇒ 2𝑘+1 > 2𝑘 

Since 2𝑘 > 𝑘 + 1 as 𝑘 > 1 and 2𝑘+1 > 2𝑘 then 2𝑘+1 > 𝑘 + 1 

If true for 𝑛 = 𝑘 then . . .  


