Unit 2: Applications in Algebra and Calculus (H7X1 77)

Applying Algebraic Skills to Summation and Mathematical Proof

Proof by Induction: Statement is made about . . .

- Shown that it works for an initial value n = a (usually n = 1)
- Next assume statement is true for n = k and get an expression
- Prove that it is true for n = k + 1 using algebraic manipulation.
- Conclude that if true for n = k then true for n = k + 1 and since true for n = a, then true for all n.

Summation Formulae (Series):

0

Prove by induction that
$$1+2+3+\cdots = \frac{n}{2}(n+1)$$
 i.e.

$$\sum_{r=1}^{n} r = \frac{n}{2}(n+1), \quad n \ge 1, n \in \mathbb{N}$$

Step 1: Let
$$n = 1$$
: $\sum_{r=1}^{1} r = \frac{1}{2}(1+1) = 1$
 \checkmark True

Step 2: Assume true for n = k, expression is: $\sum_{r=1}^{k} r = \frac{k}{2}(k+1)$

Step 3: Get the similar expression for k + 1:

$$\sum_{r=1}^{k+1} r = \frac{k+1}{2}(k+1+1) = \frac{1}{2}(k+1)(k+2)$$
 This answer is our target!

Step 4: Get alternative expression for k + 1 using answer to Step 2 plus $(k + 1)^{st}$ term and show they are the same:

$$\sum_{r=1}^{k} r + (k+1) = \frac{k}{2}(k+1) + (k+1) = [k+1]\left(\frac{k}{2} + 1\right) = \frac{1}{2}(k+1)(k+2)$$

0

If true for n = k then true for n = k + 1 and since true for n = 1, then by induction, it is true $\forall n \ge 1, n \in \mathbb{N}$.

Prove by induction that $1 + 4 + 9 + 16 + \dots = \frac{n(n+1)(2n+1)}{6}$ i.e. $\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}, \quad n \ge 1, n \in \mathbb{N}$

Step 1: Let
$$n = 1$$
: $\sum_{r=1}^{1} r^2 = \frac{1(1+1)(2+1)}{6} = \frac{6}{6} = 1$ \checkmark True

Step 2: Assume true for
$$n = k$$
: $\sum_{r=1}^{k} r^2 = \frac{k(k+1)(2k+1)}{6}$

Step 3: Get similar expression for
$$k + 1$$
:

$$\sum_{r=1}^{k+1} r = \frac{(k+1)(k+1+1)(2(k+1)+1)}{6} = \frac{1}{6}(k+1)(k+2)(2k+3)$$

Step 4: Get alternative expression for k + 1 using answer to 2 plus $(k + 1)^{st}$ term and show that they the are the same:

$$\sum_{r=1}^{k} r^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2} = \left[\frac{k+1}{6}\right] [k(2k+1) + 6(k+1)]$$
$$= \left[\frac{k+1}{6}\right] [2k^{2} + k + 6k + 6] = \frac{1}{6}(k+1) \left(2k^{2} + 7k + 6\right)$$
$$= \frac{1}{6}(k+1)(k+2)(2k+3) \qquad \checkmark$$

NB - Algebra usually only worth 1 mark so if it's not working out then have a Eureka moment as the last mark is normally the conclusion!!

Step 5: Write conclusion:

If true for n = k then true for n = k + 1 and since true for n = 1, then by induction, it is true $\forall n \ge 1, n \in \mathbb{N}$. Use proof by induction to show that $\forall n \ge 1, n \in \mathbb{N}$:

7.
$$\sum_{r=1}^{n} (3r-1) = \frac{n}{2}(3n+1)$$

7.
$$\sum_{r=1}^{n} (2r+1) = n(n+2)$$

7.
$$\sum_{r=1}^{n} \frac{1}{r(r+1)} = \frac{n}{n+1}$$

7.
$$\sum_{r=1}^{n} (2r+1) = n(n+2)$$

7.
$$\sum_{r=1}^{n} r(r+1) = \frac{1}{3}n(n+1)(n+2)$$

Multiple of/Divisible by:

3 Prove by induction that $n^3 + 2n$ is divisible by 3, $\forall n \in \mathbb{N}$.

Step 1: Let
$$n = 1$$
: $n^3 + 2n = 1^3 + 2 \times 1 = 3$, $3|3$
True

Step 2: Assume true for n = k and make expression a multiple of 3: $3|k^3 + 2k \Rightarrow k^3 + 2k = 3m, m \in \mathbb{N}$

Step 3: Get expression for k + 1: $n^3 + 2n = (k + 1)^3 + 2(k + 1) = k^3 + 3k^2 + 3k + 1 + 2k + 2$

Step 4: Now re-arrange the expression for n = k + 1 to look like the answer for n = k plus any extra terms. These terms should have the required divisor as a common factor: $k^3 + 3k^2 + 3k + 1 + 2k + 2 = k^3 + 2k + 3k^2 + 3k + 3$ $(k + 1)^3 + 2(k + 1) = 3m + 3k^2 + 3k + 3 = 3(m + k^2 + k + 1)$ \checkmark True

Step 5: Write conclusion:

If true for n = k then true for n = k + 1 and since true for n = 1, then by induction, it is true $\forall n \in \mathbb{N}$.

Reminder: For divisible by 6, show divisible by 2 and divisible by 3 thus . .

Step 1: Let
$$n = 1$$
: $9^1 + 7 = 9 + 7 = 16$, $8|16$
True

Step 2: Assume true for n = k: $8|9^n + 7 \Rightarrow 9^n + 7 = 8m, m \in \mathbb{N}$

Step 3: Get expression for k + 1: $9^{(k+1)} + 7$

Step 4: Now re-arrange the expression to look like the answer for n = k using the laws of indices:

$$9^{(k+1)} + 7 = 9^k \times 9 + 7 = 9^k \times (8+1) + 7$$

Multiply out the bracket: $8 \times 9^k + 1 \times 9^k + 7 = 8 \times 9^k + 9^k + 7$

$$9^{(k+1)} + 7 = 8 \times 9^k + 8m = 8(9^k + m)$$

Step 5: Write conclusion:

If true for n = k then true for n = k + 1 and since true for n = 1, then by induction, it is true $\forall n \in \mathbb{N}$.

Prove by induction that:

7.	$3 n^3 - n$	2.	$6 n^3 - n$
з.	$10 6^n + 4$	4.	$4 5^{n} + 3$
$6\cdot$	$64 9^n - 8n - 1$	7.	$5 8^n + 3^{n-2}$

<u>Left Field:</u>

4

- DeMoivre (2012 Q16)
- Binomial (2015 Q9)
- Matrices (2006 Q13)
- nth Derivative (2004 Q12)
- Greater or Less Than (2007 Q12)

Bk 3 P141 Ex3A Q1, 3, 5, 7 Bk 3 P141 Ex3B Q1

True

6

Prove by induction that if $z = r(\cos \theta + i \sin \theta)$ then $z^n = r^n(\cos n\theta + i \sin n\theta)$

Step 1: Let
$$n = 1$$
: $z^1 = r^1(\cos 1\theta + i \sin 1\theta) = r(\cos \theta + i \sin \theta)$
 \checkmark True

Step 2: Assume true for n = k: $z^k = r^k (\cos k\theta + i \sin k\theta)$

Step 3: Get expression for k + 1: $z^{k+1} = r^{k+1}(\cos(k+1)\theta + i\sin(k+1)\theta)$

Step 4: Using the laws of indices and compound angle formulae:

 $z^{k+1} = z^k \times z^1$

$$z^{k+1} = r^k (\cos k\theta + i \sin k\theta) + r(\cos \theta + i \sin \theta)$$

 $z^{k+1} = r^{k+1} (\cos k\theta \cos \theta + i \cos k\theta \sin \theta + i \sin k\theta \cos \theta + i^2 \sin k\theta \sin \theta)$

 $z^{k+1} = r^{k+1}(\cos k\theta \cos \theta - \sin k\theta \sin \theta + i \sin k\theta \cos \theta + i \cos k\theta \sin \theta)$

 $z^{k+1} = r^{k+1}(\cos(k+1)\theta + i\sin(k+1)\theta)$

Step 5: Write conclusion:

If true for n = k then true for n = k + 1 and since true for n = 1, then by induction, it is true $\forall n \in \mathbb{N}$.

Binomial Theorem:

O Prove by induction that

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r$$

Step 1: Let
$$n = 1$$
: $(x + y)^1 = \sum_{r=0}^n {\binom{1}{r}} x^{1-r} y^r = {\binom{1}{0}} x^{1-0} y^0 + {\binom{1}{1}} x^{1-1} y^1 = x + y$
 $(x + y)^1 = x + y$
True

Step 2: Assume true for
$$n = k$$
: $(x + y)^k = \sum_{r=0}^n {k \choose r} x^{k-r} y^r$

Step 3: Get expression for k + 1: $(x + y)^{k+1} = \sum_{r=0}^{n} {\binom{k+1}{r} x^{k+1-r} y^r}$

Step 4: Using the laws of indices:

$$(x+y)^{k+1} = (x+y)^k \times (x+y)^1$$

$$(x+y)^{k+1} = (x+y) \sum_{r=0}^n \binom{k}{r} x^{k-r} y^r$$

$$(x+y)^{k+1} = x \sum_{r=0}^n \binom{k}{r} x^{k-r} y^r + y \sum_{r=0}^n \binom{k}{r} x^{k-r} y^r$$

$$= x \binom{k}{0} x^k y^0 + x \binom{k}{1} x^{k-1} y^1 + x \binom{k}{2} x^{k-2} y^2 + \dots + y \binom{k}{0} x^k y^0 + y \binom{k}{1} x^{k-1} y^1 + y \binom{k}{2} x^{k-2} y^2 + \dots$$

$$= \binom{k}{0} x^{k+1} y^0 + \binom{k}{1} x^k y^1 + \binom{k}{2} x^{k-1} y^2 + \dots + \binom{k}{0} x^{k+1} y^0 + \binom{k}{1} x^k y^1 + \binom{k}{2} x^{k-1} y^2 + \dots$$

$$= \binom{k}{0} x^{k+1} + \left[\binom{k}{0} + \binom{k}{1}\right] x^k y + \left[\binom{k}{1} + \binom{k}{2}\right] x^{k-1} y^2 + \dots + \binom{k}{k} y^{k+1}$$
From $\binom{n}{r-1} + \binom{n}{r} = \binom{n+1}{r}$ we get that $\binom{k}{0} + \binom{k}{1} = \binom{k+1}{1}$, $\binom{k}{1} + \binom{k}{2} = \binom{k+1}{2}$, etc

50:

$$\binom{k}{0} x^{k+1} + \left[\binom{k}{0} + \binom{k}{1}\right] x^{k} y + \left[\binom{k}{1} + \binom{k}{2}\right] x^{k-1} y^{2} + \dots + \binom{k}{k} y^{k+1}$$

$$= \binom{k}{0} x^{k+1} + \binom{k+1}{1} x^{k} y + \binom{k+1}{2} x^{k-1} y^{2} + \dots + \binom{k}{k} y^{k+1}$$

From
$$\binom{k}{0} = \binom{k+1}{0} = 1$$
 and $\binom{k}{k} = \binom{k+1}{k+1} = 1$
 $\binom{k}{0}x^{k+1} + \binom{k+1}{1}x^{k}y + \binom{k+1}{2}x^{k-1}y^{2} + \dots + \binom{k}{k}y^{k+1}$
 $= \binom{k+1}{0}x^{k+1} + \binom{k+1}{1}x^{k}y + \binom{k+1}{2}x^{k-1}y^{2} + \dots + \binom{k+1}{k+1}y^{k+1}$
 $= \sum_{r=0}^{n} \binom{k+1}{r}x^{k+1-r}y^{r}$
True

Step 5: Write conclusion:

If true for n = k then true for n = k + 1 and since true for n = 1, then by induction, it is true $\forall n \in \mathbb{N}$.

Prove by induction that $\binom{n+2}{3} - \binom{n}{3} = n^2$ for integers $n \ge 3$ Let n = 3: $\binom{3+2}{3} - \binom{3}{3} = \frac{(3+2)!}{(3+2-3)!3!} - \frac{3!}{(3-3)!3!} = \frac{120}{12} - \frac{6}{6} = 9 = 3^2$ True Assume true for n = k: $\binom{k+2}{3} - \binom{k}{3} = k^2$ Expression for k + 1: $\binom{k+1+2}{3} - \binom{k+1}{3} = \binom{k+3}{3} - \binom{k+1}{3} = (k+1)^2$ From $\binom{n}{r-1} + \binom{n}{r} = \binom{n+1}{r}$ we get $\binom{k+3}{3} = \binom{k+2}{2} + \binom{k+2}{3}$ and $\binom{k+1}{3} = \binom{k}{2} + \binom{k}{3}$ $So \binom{k+3}{3} - \binom{k+1}{3} = \binom{k+2}{2} + \binom{k+2}{3} - \binom{k}{2} - \binom{k}{3} = k^2 + \binom{k+2}{2} - \binom{k}{2}$ $\binom{k+2}{2} = \frac{(k+2)!}{(k+2-2)!\,2!} = \frac{(k+2)(k+1)k\dots}{k(k-1)\dots2} = \frac{(k+2)(k+1)}{2}$ $\binom{k}{2} = \frac{(k)!}{(k-2)!\,2!} = \frac{k(k-1)(k-2)\dots}{(k-2)(k-1)\dots 2} = \frac{k(k-1)}{2}$ $\binom{k+2}{2} - \binom{k}{2} = \frac{(k+2)(k+1)}{2} - \frac{k(k-1)}{2} = \frac{k^2 + 3k + 2 - k^2 + k}{2} = 2k + 1$ $k^{2} + {\binom{k+2}{2}} - {\binom{k}{2}} = k^{2} + 2k + 1 = (k+1)^{2}$ True

If true for n = k then true for n = k + 1 and since true for n = 1, then by induction, it is true $\forall n \in \mathbb{N}$.

ACADEM

0

Matrices:

3 For $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$, use induction to prove that $A^n = \begin{pmatrix} 1 & 0 \\ 1 - 2^n & 2^n \end{pmatrix}$ for all positive integers. Let n = 1: $A^1 = \begin{pmatrix} 1 & 0 \\ -1 & 2^1 \end{pmatrix} = A^n = \begin{pmatrix} 1 & 0 \\ -1 & 2^n \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 2^n \end{pmatrix}$

Let
$$n = 1$$
: $A^{1} = \begin{pmatrix} 1 & 0 \\ 1 - 2^{1} & 2^{1} \end{pmatrix} = A^{n} = \begin{pmatrix} 1 & 0 \\ 1 - 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$
 \checkmark True

Assume true for
$$n = k$$
: $A^k = \begin{pmatrix} 1 & 0 \\ 1 - 2^k & 2^k \end{pmatrix}$

Expression for k + 1: $A^{k+1} = \begin{pmatrix} 1 & 0 \\ 1 - 2^{k+1} & 2^{k+1} \end{pmatrix}$

Using the laws of indices: $A^{k+1} = A^k A^1$

$$A^{k}A^{1} = \begin{pmatrix} 1 & 0 \\ 1 - 2^{k} & 2^{k} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 + 0 \times -1 & 0 + 0 \times 2 \\ (1 - 2^{k}) \times 1 - 1 \times 2^{k} & 0 + 2^{k} \times 2 \end{pmatrix}$$

True

 $NB - (1 - 2^{k}) \times 1 - 1 \times 2^{k} = 1 - 2^{k} - 2^{k} = 1 - 2 \times 2^{k} = 1 - 2^{k+1}$

So
$$A^k A^1 = \begin{pmatrix} 1 & 0 \\ 1 - 2^{k+1} & 2^{k+1} \end{pmatrix}$$

If true for n = k then true for n = k + 1 and since true for n = 1, then by induction, it is true $\forall n \in \mathbb{N}$.

Smaller or Larger than:

9 Prove by induction that $2^n > n, n \ge 1, n \in \mathbb{N}$.

Let
$$n = 1$$
: $2^1 = 2$ which is greater than 1
True
Assume true for $n = k$: $2^k > k$
Expression for $k + 1$: $2^{k+1} > k + 1$
Using the laws of indices: $2^{k+1} = 2^k \times 2 \Rightarrow 2^{k+1} > 2k$
Since $2k > k + 1$ as $k > 1$ and $2^{k+1} > 2k$ then $2^{k+1} > k + 1$
If true for $n = k$ then ...