Applying Algebraic and Geometric skills to Methods of Proof

Essential knowledge:

- **1.** Find an example/counter-example to prove/disprove the following statements:
 - **a.** $\exists n \text{ where } n \text{ is prime s.t. } 2^n + 5 \text{ is also prime.}$
 - **b.** If p < q and $r < s \Rightarrow pr < qs \forall p,q,r,s \in \mathbb{R}$
- 2. Write inverse, converse and contrapositive statements for:
 - **a.** If $\triangle ABC$ is right-angled then $a^2 + b^2 = c^2$
 - **b.** If n^2 is odd then n is odd.
- 3. Using proof by contradiction, prove that:
 - **a.** For $a \in \mathbb{Z}$, If a^2 is even then a is even
 - **b.** If x is irrational (x > 0), then \sqrt{x} is irrational.
- 4. Using direct proof, prove that:
 - **a.** If *n* is odd then $n^2 + 1$ is even
 - **b.** The sum of 2 consecutive odd numbers is always divisible by 4

<u>Unit level</u>:

- 5. Find a counter-example to disprove these conjectures:
 - **a.** If $a^4 < b^4$ then a < b for any real number a and b.
 - **b.** If $p < q 3 \Rightarrow (p + 3)^2 < q^2 \forall p, q, \in \mathbb{R}$
- **6.** Prove, by contradiction, that:
 - **a.** If $n^3 3$ is even then n is odd.
 - **b.** If 3x is irrational (x > 0), then x is irrational
- **7.** Prove directly that the product of two odd numbers is always odd.

Assessment level:

- **8.** For all natural numbers n, prove that $n^3 n$ is always divisible by 6.
- **9.** For each of the following statements, decide whether it is true or false and prove your conclusion.
 - A. For all natural numbers m, if m^2 is divisible by 4 then m is divisible by 4.
 - B. The cube of any odd integer p plus the square of any even integer q is always odd.

<u>Challenge Questions</u> (optional)

 Consider all three-digit numbers formed by using *different* digits from 0, 1, 2, 3 and 5. How many of these digits are divisible by 6?

