Applying Algebraic and Geometric skills to Vectors

AH Mathematics HW

Essential knowledge:

1. Find the direction vector, ratio and cosines for $\boldsymbol{a}=\left(\begin{array}{l}2 \\ 2 \\ 4\end{array}\right)$
2. Find the Cartesian/symmetric equation of the line through ($2,3,-1$) and parallel to the vector $\boldsymbol{i}-\mathbf{2 j}+5 \boldsymbol{k}$
3. Find the equation of the plane with normal $\left(\begin{array}{c}1 \\ 2 \\ -4\end{array}\right)$ through $(2,3,-1)$:
4. Calculate the volume of the parallelepiped that has $\boldsymbol{u}=-2 \boldsymbol{i}+5 \boldsymbol{k}, \boldsymbol{v}=3 \boldsymbol{i}+$ $2 \boldsymbol{j}-\boldsymbol{k}$ and $\boldsymbol{w}=-\boldsymbol{i}+\boldsymbol{j}+4 \boldsymbol{k}$
5. For the lines: $L_{1}: x-1=y=z-1$ and $L_{2}: x=1+t, y=5 t$ and $z=-t$ and the planes: $\pi_{1}: x+2 y+z=0$ and $\pi_{2}: x+y=0$ find the angle between:-
(a) L_{1} and L_{2}
(b) π_{1} and π_{2}
(c) L_{1} and π_{2}

Unit level:

6. Given the vectors $\boldsymbol{a}=\boldsymbol{i}+2 \boldsymbol{j}+\boldsymbol{k}$ and $\boldsymbol{b}=2 \boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}$, calculate $\boldsymbol{a} \times \boldsymbol{b}$.
7. Find the equation of the line joining ($1,0,2$) and ($2,1,0$).
8. Find, in symmetric form, an equation of the line through the point ($0,5,-2$) which is parallel to the line $\boldsymbol{r}=(\boldsymbol{i}+5 \boldsymbol{j}-\boldsymbol{k})+\lambda(\boldsymbol{i}+5 \boldsymbol{j}-\boldsymbol{k})$
9. State, in parametric form, the equation of the plane which is parallel to the vectors $8 \boldsymbol{i}+5 \boldsymbol{j}+\boldsymbol{k}$ and $-4 \boldsymbol{i}+5 \boldsymbol{j}+\mathbf{7 k}$ and passes through the point ($-1,2,3$).

Assessment level:

10. Find the point of intersection between the lines $L_{1}: \frac{x-1}{3}=\frac{y-4}{-1}=\frac{z+7}{2}$ and $L_{2}: \frac{x+4}{4}=\frac{y-3}{-1}=\frac{z-3}{1}$
11. Let A, B, C be the points $(2,1,0),(3,3,-1)$ and $(5,0,2)$ respectively. Find $\overrightarrow{A B} \times \overrightarrow{A C}$ and obtain the equation of the plane containing A, B and C
12. Three planes have equations: $\pi_{1}: x-4 y-z=3, \pi_{2}: 2 x-2 y+z=6$ and $\pi_{3}: 3 x-11 y-2 z=10$
a. Find the acute angle between π_{1} and π_{2}
b. By using Gaussian elimination, show that the three planes intersect at a point Q, and obtain the coordinates of Q.
c. Find, in Cartesian form, the equation for the line L in which π_{1} and π_{2} intersect, and the point R in which L intersects the $x y$-plane.
d. Find the shortest distance from R to π_{3}

Challenge Questions (optional)

1. Four different straight lines are drawn on a flat piece of paper. The number of points where two or more lines intersect is counted. Which of the following could not be the number of such points?
A 1
B 2
C 3
D 4
E 5
2. The diagram shows a square $A B C D$ and a right-angled triangle $A B E$. The length of $B C$ is 3 . The length of $B E$ is 4 . What is the area of the shaded region?

A $5 \frac{1}{4}$
B $5 \frac{3}{8}$
C $5 \frac{1}{2}$
D $5 \frac{5}{8}$
E $5 \frac{3}{4}$
