Unit 2: Applications in Algebra and Calculus (H7X1 77)

Applying Algebraic Skills to Sequences and Series

Sequence: list of terms following a given rule

e.g. 3, 8, 13, 18, $n \rightarrow 5n - 2$

Series: sum of these terms

e.g. 3 + 8 + 13 + 18 +

Arithmetic Sequence:

An Arithmetic sequence is created when the same amount is added to u_n to produce u_{n+1} . This constant amount is known as the <u>common</u> difference and is denoted by d.

The first term of any sequence is denoted by a.

General Arithmetic Sequence: $a, a + d, a + d + d, \ldots = a, a + d, a + 2d, \ldots$

Thus $u_1 = a$, $u_2 = a + d$, $u_3 = a + 2d$, $u_4 = a + 3d$, ..., $u_n = a + (n - 1)d$

 $u_n = a + (n-1)d$ is the general formula for an arithmetic sequence

Find the formula for the n^{th} term of the sequence 6, 11, 16 and hence find u_{10} . $a = 6, d = 5 \Rightarrow u_n = 6 + (n - 1) \times 5 \Rightarrow u_n = 5n + 1$

$$u_{10} = 5 \times 10 + 1 = 51$$

0 Find the arithmetic sequence whose third term is 9 and 7th term is 17.

$u_3 = a + 2d \Rightarrow a + 2d = 9$	Simultaneous equations
$u_7 = a + 6d \Rightarrow a + 6d = 17$	Subtract
$\Rightarrow 4d = 8 \Rightarrow d = 2 \Rightarrow a = 5$	First term is 2 then add 5

5, 7, 9, 11, • • • • Sequence is: Bk 2 P117 Find the position of term 62 in the sequence of 2, 8, 14, 20, Ex2A $a = 2, d = 6 \Rightarrow u_n = 2 + (n-1) \times 6 \Rightarrow u_n = 6n - 4$ Q2(1^{s1} col), 3-6

 $6n-4=62 \Rightarrow n=11$ so 62 is the 11^{th} term in the sequence

₿

0

Sum to n terms of an Arithmetic Series - S_n

 $S_n = a + (a + d) + (a + 2d) + \dots + (a + (n - 2)d) + (a + (n - 1)d)$

Reversing this calculation gives

$$S_n = (a + (n-1)d) + (a + (n-2)d) + \dots + (a+2d) + (a+d) + a$$

Adding both together vertically gives

 $2S_n = (2a + (n-1)d) + (2a + (n-1)d) + \dots + (2a + (n-1)d) + (2a + (n-1)d)$ $2S_n = n(2a + (n-1)d)$ since there are n lots:-

$$S_n = \frac{n}{2}(2a + (n-1)d)$$

This is the general formula for the sum to n terms of an Arithmetic Series and is given in the formula sheet

4

6

Find the sum of the first 15 terms of the sequence 3, 8, 13, 18

$$a = 3, d = 5 \Rightarrow S_{15} = \frac{15}{2}(2 \times 3 + (15 - 1) \times 5) = 570$$

When does the series $2 + 10 + 18 + 26 + \cdots$ first exceed 300?

$$a = 2, d = 8 \Rightarrow S_n = \frac{n}{2}(2 \times 2 + (n-1) \times 8) = \frac{n}{2}(8n-4)$$
$$S_n > 300 \Rightarrow \frac{n}{2}(8n-4) > 300 \Rightarrow 4n^2 - 2n > 300$$
$$\Rightarrow 4n^2 - 2n - 300 > 0 \Rightarrow 2n^2 - n - 150 > 0$$

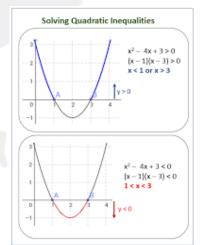
Remember Quadratic Inequalities from Higher?

Using the quadratic formula $x = \frac{1 \pm \sqrt{1 - 4 \times 2 \times (-150)}}{4}$

$$x = \frac{1 \pm \sqrt{1201}}{4} \Rightarrow x = -8.4 \text{ or } 8.9$$
$$n < -8.4 \text{ or } n > 8.9$$

n = 9 since it is a Natural number

Bk2 P120 Ex3A Q3(1st col), 4-8



 S_n can also be found via:

$$S_n = \frac{n}{2}(2a + (n-1)d) = \frac{n}{2}(a + (a + (n-1)d)) = \frac{n}{2}(a+l)$$

where
$$l = last term = a + (n - 1)d$$

Geometric Sequence:

A Geometric sequence is created when the previous term is multiplied by the same factor to get the next term. This multiplying factor is known as the <u>common ratio</u> and is denoted r.

$$r = \frac{u_2}{u_1} = \frac{u_3}{u_2} =$$

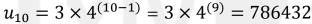
General Geometric Sequence: $a, a \times r, a \times r \times r, ... = a, ar, ar^2, ...$

Thus $u_1 = a$, $u_2 = ar$, $u_3 = ar^2$, $u_4 = ar^3$, ..., $u_n = ar^{(n-1)}$

 $u_n = ar^{(n-1)}$ is the general formula for an geometric sequence

Find the formula for the nth term and hence the 10th term of the sequence 3, 12, 48,

$$a = 3, r = \frac{u_2}{u_1} = \frac{12}{3} = 4$$
 so $u_n = 3 \times 4^{(n-1)}$



6

Find the geometric sequence whose 3^{rd} term is 18 and 8^{th} term is 4374.

$$u_3 = 18 \Rightarrow ar^2 = 18$$
 $u_8 = 4374 \Rightarrow ar^7 = 4374$

Divide

e:
$$\frac{u_8}{u_3} = \frac{ar^7}{ar^2} = \frac{4374}{18} \Rightarrow r^5 = 243 \Rightarrow r = 3$$
$$ar^2 = 18 \Rightarrow 9a = 18 \Rightarrow a = 2$$

Sequence is 2, 6, 18, 54, • • •

Bk 2 P120 Ex4A Q1(1^{s†} col), 2-5 Sum to n terms of a Geometric Series - S_n

 $S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-2} + ar^{n-1}$

Multiply through by r

$$\label{eq:sigma} rS_n = ar + ar^2 + ar^3 + ar^4 + \ldots + ar^{n-1} + ar^n$$
 Subtracting gives

$$S_n - rS_n = a - ar^n \Rightarrow S_n(1 - r) = a(1 - r^n)$$

$$S_n = \frac{a(1-r^n)}{(1-r)}$$

This is the general formula for the sum to n terms of a Geometric Series and is given in the formula sheet

For the sequence 12, 15, 18.75, . . find the smallest value of n s.t. $S_n > 100$ 8

$$a = 12, r = \frac{15}{12} = \frac{5}{4} \text{ so } S_n = \frac{12\left(1 - \left(\frac{5}{4}\right)^n\right)}{\left(1 - \frac{5}{4}\right)} = -48\left(1 - \left(\frac{5}{4}\right)^n\right)$$

$$S_n > 100 \Rightarrow = -48 \left(1 - \left(\frac{5}{4}\right)^n\right) > 100 \Rightarrow 1 - \left(\frac{5}{4}\right)^n < -\frac{25}{12} \qquad \text{NB > reversed}$$

 $\left(\frac{1}{4}\right) < -\frac{1}{12} \Rightarrow \left(\frac{1}{4}\right) > \frac{37}{12}$ < reversed again! Bk2 P127 Ex5A $n\ln\frac{5}{4} > \ln\frac{37}{12} \Rightarrow n > \frac{\ln\frac{37}{12}}{\ln\frac{5}{4}} \Rightarrow n > 5.046$ Q1&2 (1st column) Q3-5

Find the sequence whose 1st 3 terms add to 14 and first 6 terms add to 126 9

$$S_3 = \frac{a(1-r^3)}{(1-r)} = 14$$
 $S_6 = \frac{a(1-r^6)}{(1-r)} = 126$

Divide:
$$\frac{S_6}{S_3} = \frac{126}{14} = \frac{\frac{a(1-r^6)}{(1-r)}}{\frac{a(1-r^3)}{(1-r)}} = \frac{a(1-r^6)}{(1-r)} \times \frac{(1-r)}{a(1-r^3)} = \frac{(1-r^6)}{(1-r^3)} = 9$$

X-multiply and re-arrange: $9 - 9r^3 = 1 - r^6 \Rightarrow r^6 - 9r^3 + 8 = 0$ $(r^3 - 8)(r^3 - 1) = 0 \Rightarrow r = 2 \text{ or } r = 1$ $r \neq 1 (a, a, a, etc)$ Factorise: $r = 2 \Rightarrow \frac{a(1-2^3)}{(1-2)} = 14 \Rightarrow a = 2 \text{ so } 2, 4, 8, 16$

So 6 terms would be added for the series to exceed 100.

We know $S_n = \frac{a(1-r^n)}{(1-r)}$ If r > 1 then as $n \to \infty$, r^n becomes dominant. If |r| < 1, then as $n \to \infty$, $r^n \to 0$ and so $S_n = \frac{a(1-0)}{(1-r)}$ i.e. $S_{\infty} = \frac{a}{1-r}$ when |r| < 1O Calculate 24 + 12 + 6 + 3 + ... i.e. S_{∞} $a = 24, r = \frac{u_2}{u_1} = \frac{12}{24} = 0.5$ so |r| < 1 so limit exists. $S_{\infty} = \frac{a}{1-r} = \frac{24}{1-0.5} = 48$ O Express 0.1212121212... as a vulgar fraction.

 $0.1212121212 \dots = 0.12 + 0.0012 + 0.000012 + 0.00000012$

 $a = 0.12, r = \frac{u_2}{u_1} = \frac{0.0012}{0.12} = 0.01$ so |r| < 1 so limit exists.

$$S_{\infty} = \frac{a}{1-r} = \frac{0.12}{1-0.01} = \frac{0.12}{0.99} = \frac{12}{99} = \frac{4}{33}$$

1 Given that 12 and 3 are adjacent terms in an infinite geometric series with $S_{\infty} = 64$, find the first term.

$$r = \frac{u_2}{u_1} = \frac{3}{12} = \frac{1}{4}$$
 so $|r| < 1$ so limit exists.

$$S_{\infty} = 64 = \frac{a}{1 - \frac{1}{4}} = \frac{a}{\frac{3}{4}} \Rightarrow a = 48$$

Obtain the infinite geometric series for $S_{\infty} = \frac{2}{2-3k}$ and find the values for r that make this series valid.

$$\frac{2}{2-3k} = \frac{2}{2\left(1-\frac{3}{2}k\right)} = \frac{1}{1-\frac{3}{2}k} \Rightarrow a = 1, r = \frac{3}{2}k$$

Bk2 P131 Ex6A
Q3, 5, 6
$$1 + \frac{3}{2}k + \frac{9}{4}k^2 + \frac{27}{8}k^3 + \cdots$$
$$\left|\frac{3}{2}k\right| < 1 \Rightarrow |k| < \frac{2}{3}$$

Σ Sigma Notation - the sum of, (standard deviation, Binomial)

$$\sum_{r=1}^{n} f(r) = f(1) + f(2) + \dots + f(n)$$
1 4 Expand
$$\sum_{r=1}^{4} r!$$

$$\sum_{r=1}^{4} r! = 1! + 2! + 3! + 4! = 33$$

If f(r) contains more than one term then it can be split and constants removed (similar to Integration):

$$\sum_{r=1}^{n} ar + b = \sum_{r=1}^{n} ar + \sum_{r=1}^{n} b = a \sum_{r=1}^{n} r + b \times n$$

NB - To calculate part of a series, find the whole series subtract the start:

$$\sum_{r=a}^{n} f(r) = \sum_{r=1}^{n} f(r) - \sum_{r=1}^{a-1} f(r)$$

Sum to n terms of r, r^2 and r^3 - all given on the formula sheet

$$\sum_{r=1}^n r = 1 + 2 + \dots + n$$

This is an Arithmetic series with a = 1 and d = 1 i.e.

$$S_n = \frac{n}{2}(2 \times 1 + (n-1) \times 1)$$
$$\sum_{r=1}^n r = \frac{n}{2}(n+1)$$

Also:

Also:

$$\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}$$

06

Write as a fully factorised formula:

$$\sum_{r=1}^{n} \left(r^2 - \frac{1}{3}r \right) = \sum_{r=1}^{n} r^2 - \frac{1}{3} \sum_{r=1}^{n} r = \frac{n(n+1)(2n+1)}{6} - \frac{1}{3} \times \frac{n}{2}(n+1)$$
$$= \frac{n(n+1)[(2n+1)-1]}{6} = \frac{n^2(n+1)}{3}$$

06

00

Write the series $18 + 28 + 38 + \dots + 108$ in sigma notation

Arithmetic series so $u_n = a + (n-1)d$ with a = 18 and d = 10 $u_n = 108 = 18 + (n-1)10 \Rightarrow n = 10$ i.e. upper limit.

$$\sum_{r=1}^{10} (10r+8)$$

 $\sum_{r=1}^{n} \left(r^2 - \frac{1}{3}r \right)$

Write the series $-26 + 22 - 18 + \dots + (-46)$ in sigma notation

Alternating +/- means we have $(-1)^r$ as a factor so $u_n = (-1)^n [a + (n-1)d]$ with a = 26 and d = -4 $u_n = -46 = 26 + (n-1)(-4) \Rightarrow n = 19$ $\sum_{r=1}^{19} (-1)^r (30 - 4r)$

Expanding
$$(1-x)^{-1}$$
 and related functions
 $(1-x)^{-1} = \frac{1}{1-x}$

If we compare this to the sum to infinity of a geometric series |r| < 1:

$$S_{\infty} = \frac{a}{1-r}$$

We get the series with a = 1 and r = x: $1 + x + x^2 + x^3 + x^4 + \cdots$

$$(1-x)^{-1} = 1 + x + x^2 + x^3 + x^4 + \cdots$$

Similarly:

$$(1+x)^{-1} = (1-(-x))^{-1} = 1 + (-x) + (-x)^2 + (-x)^3 + (-x)^4 + \cdots$$

i.e.

$$(1+x)^{-1} = 1 - x + x^2 - x^3 + x^4 + \cdots$$

18 Expand $\frac{3}{1+x-2x^2}$

Step 1: Convert to partial fractions: $\frac{3}{1+x-2x^2} = \frac{A}{1+2x} + \frac{B}{1-x}$

$$A(1-x) + B(1+2x) = 3$$

$$x = 1 \Rightarrow B = 1 \qquad x = -0.5 \Rightarrow A = 2$$
Step 2: Substitute $\frac{3}{1+x-2x^2} = \frac{2}{1+2x} + \frac{1}{1-x} = 2(1+2x)^{-1} + (1-x)^{-1}$

Step 3: Expand: $2(1+2x)^{-1} + (1-x)^{-1} = 2(1-2x+4x^2-8x^3+\cdots) + (1+x+x^2+x^3+\cdots)$

Step 4: Simplify

 $= 3 - 3x + 9x^2 - 15x^3 + \cdots$

Bk2 P137Ex8 Q1(1st col), 3, 5(1st col)

Maclaurin Expansions

Suppose that:	$f(x) = a + bx + cx^2 + dx^3$	
then	$f'(x) = b + 2cx + 3dx^2$	
	$f^{\prime\prime}(x) = 2c + 6dx$	

Bk2 P134 Ex7B

Q2, 3, 5

From above: f(0) = a, f'(0) = b, $f''^{(0)} = 2c \Rightarrow c = \frac{f''^{(0)}}{2!}$ and $f''^{(0)} = 6d \Rightarrow d = \frac{f''^{(0)}}{3!}$

Hence $f(x) = a + bx + cx^2 + dx^3$ can be written as:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3$$

 $f^{\prime\prime\prime}(x) = 6d$

Any series of the form $a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + \cdots$ is called a <u>Power Series</u>. In many cases, the sum of such series becomes bigger and bigger as you add on successive terms, in which case the series is said to <u>diverge</u>.

On the other hand, some series are such that, as more terms are added, the sum approaches a particular limit (i.e. a single function), in which case it is said to

<u>converge</u>: $\left|\frac{u_{n+1}}{u_n}\right| < 1$

Maclauren's Theorem states that, under certain circumstances, a function f(x) is given by:-

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \frac{f^{iv}(0)}{4!}x^4 + \dots + \frac{f^n(0)}{n!}x^n$$

The series can be found if $f^n(0)$ exists for all values of n and is given on the formula sheet. Some series converge to f(x) for <u>all values</u> of x and others converge for a <u>limited range</u> of values of x. It can also be expressed using sigma notation:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} x^n$$

Write down the Maclaurin expansion of e^x .

 $f(x) = e^{x} \Rightarrow f(0) = 1$ $f'(x) = e^{x} \Rightarrow f'(0) = 1$ $f''(x) = e^{x} \Rightarrow f''(0) = 1$ $f'''(x) = e^{x} \Rightarrow f'''(0) = 1$ $f^{iv}(x) = e^{x} \Rightarrow f^{iv}(0) = 1$

 $e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!}$

for all $x \in \mathbb{R}$

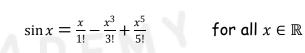
NB For
$$e^{ax} = 1 + \frac{ax}{1!} + \frac{(ax)^2}{2!} + \frac{(ax)^3}{3!} + \frac{(ax)^4}{4!} + \cdots$$

Find the first 3 non-zero terms of the Maclaurin expansion of $f(x) = \sin x$ (in radians).

 $f(x) = \sin x \Rightarrow f(0) = 0$ $f'(x) = \cos x \Rightarrow f'(0) = 1$ $f''(x) = -\sin x \Rightarrow f''(0) = 0$ $f'''(x) = -\cos x \Rightarrow f^{'''(0)} = -1$ $f^{iv}(x) = \sin x \Rightarrow f^{iv}(0) = 1$

Bk3 P91/92 Ex4 Q1, 6

Hence



Expand:1. $f(x) = \cos x$ as far as x^6 2. $f(x) = \tan x$ as far as x^3 3. $f(x) = \sin^{-1} x$ as far as x^3 4. $f(x) = \ln(1-x)$ as far as x^4 5. $f(x) = (1+x)^{\frac{1}{2}}$ as far as x^5 6. $f(x) = \tan 2x$ as far as x^5

Composite Functions

Two possible routes:

- Use the product/quotient/chain rules
- Expand each function separately if possible then multiply/divide results.

00

Obtain the first three non-zero terms in the Maclaurin expansion of $f(x) = x \ln(2 + x)$

$$f(x) = x \ln(2 + x) \qquad so \qquad f(0) = 0$$

$$f'(x) = \frac{x}{2+x} + \ln(2 + x) \qquad so \qquad f'(0) = \ln(2)$$

$$f''(x) = \frac{2}{(2+x)^2} + \frac{1}{2+x} \qquad so \qquad f''(0) = 1$$

$$f'''(x) = -\frac{4}{(2+x)^3} - \frac{1}{(2+x)^2} \qquad so \qquad f'''(0) = -\frac{3}{4}$$

$$x \ln(2 + x) = \frac{\ln(2)x}{2} + \frac{x^2}{3} + \frac{3}{3} + \frac{x^3}{3} + \ln(2)x + \frac{x^2}{3} + \frac{x^3}{3} + \frac{1}{3} + \frac{x^3}{3} + \frac{1}{3} + \frac{1}$$

Hence $f(x) = x \ln(2+x) = \frac{\ln(2)x}{1!} + \frac{x^2}{2!} - \frac{3}{4} \times \frac{x^3}{3!} = \ln(2)x + \frac{x^2}{2} - \frac{x^3}{8} + \cdots$

Expand
$$f(x) = e^{-2x} \sin 3x$$
 in ascending powers of x as far
as the term x^4 .

We have seen above that $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$ and $\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!}$

So
$$e^{-2x} = 1 + \frac{(-2x)^2}{1!} + \frac{(-2x)^2}{2!} + \frac{(-2x)^3}{3!} + \frac{(-2x)^4}{4!} = 1 - 2x + 2x^2 - \frac{4}{3}x^3 + \frac{2}{3}x^4 \dots$$

And $\sin 3x = \frac{(3x)}{1!} + \frac{(3x)^3}{3!} + \frac{(3x)^5}{5!} = 3x - \frac{9}{2}x^3 + \frac{81}{40}x^5 \dots$

Hence
$$e^{-2x} \sin 3x = \left(1 - 2x + 2x^2 - \frac{4}{3}x^3 + \frac{2}{3}x^4 + \cdots\right) \left(3x - \frac{9}{2}x^3 + \frac{81}{40}x^5 + \cdots\right)$$

 $e^{-2x} \sin 3x = 3x - 6x^2 + 6x^3 - 4x^4 + \cdots - \frac{9}{2}x^3 + 9x^4$

$$e^{-2x}\sin 3x = 3x - 6x^2 + \frac{3}{2}x^3 + 5x^4 + \cdots$$

Expand:1. $f(x) = e^{\sin x}$ as far as x^4 2. $f(x) = \ln(1 + \sin x)$ as far as x^4 3. $f(x) = e^x \sin x$ as far as x^5 4. $f(x) = \ln(1 + e^x)$ as far as x^4

Answers to page 9:
1.
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

2. $x + \frac{x^3}{3}$
3. $x + \frac{x^3}{6}$
4. $-x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$
5. $1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \frac{7x^5}{256}$
6. $2x + \frac{8x^3}{3} + \frac{64x^5}{15}$

Answers to page 10:

$$\begin{array}{rcl}
1 &+ x + \frac{x^2}{2} - \frac{x^4}{8} \\
2 &\cdot & x - \frac{x^2}{2} + \frac{x^3}{6} - \frac{x^4}{12} \\
3 &\cdot & x + x^2 + \frac{x^3}{3} - \frac{x^5}{30} \\
4 &\cdot & \ln(2) + \frac{x}{2} - \frac{x^2}{8} + \frac{x^4}{192}
\end{array}$$