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Unit 3: Geometry, Proof and Systems of Equations (H7X3 77) 
 
Applying Algebraic and Geometric skills to Methods of Proof 

 

In mathematics, a STATEMENT is either TRUE or FALSE but not both. 
 

 

The sum of the angles in a triangle is always 180° - TRUE 
 

𝑥 = 3 ⇒ 𝑥2 = 9-TRUE 
 

𝑥2 = 9 ⇒ 𝑥 = 3- FALSE since 𝑥 = −3 is another solution 
 

𝑛2 + 𝑛is even for all positive integers 𝑛 
 

When 𝑛 = 1:          𝑛2 + 𝑛 = 12 + 1 = 2-TRUE 

When 𝑛 = 2:          𝑛2 + 𝑛 = 22 + 2 = 6-TRUE  

When 𝑛 = 3:          𝑛2 + 𝑛 = 32 + 3 = 12-TRUE 
 

Certainly,   𝑛2 + 𝑛is even for 𝑛 = 1, 2, 3however this is not a 

proof it is even for all positive integers 𝑛. The above calculations 

are no guarantee it will be even for other values of 𝑛. 

 

There are methods for rigorously proving that statements are true beyond any doubt 

and you will learn some simple methods of proof in this section. Firstly, however, you 

will need to learn some new notation and how to prove that a statement is FALSE. 
 

 

Notation 
By convention, particular symbols are reserved for the most important sets of 

numbers: 

R – set of real numbers 

Q – set of rational numbers (from quotient – numbers that 

can be written as a fraction e.g. 2
3⁄ ) 

C – set of complex numbers (met this already) 

Z – set of integers (from Zahl which is german for number) 

N – set of natural/whole numbers W/N0= {0, 1, 2, 3, … } and N= {1, 2, 3, … }  
 

There is no universal symbol for irrational numbers (e.g. 𝜋, √2) 

although I is used in some texts. 
 

∀ - for all   ∃ - there exists  𝑖𝑓𝑓 – if and only if 

 ∈ - is a member of  ⇒ - implies   ⇔ - equivalence  

⇐ - converse   ¬ - negation   𝑝|𝑎 - 𝑝 divides into 𝑎 
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There are 5 types of statements: 

UNIVERSAL statement refers to all items in the defined set: 

2𝑥 + 3𝑥 = 5𝑥 for all 𝑥 ∈ R can be re-written as 2𝑥 + 3𝑥 = 5𝑥, ∀𝑥 ∈ R. 

 

EXISTENTIAL statement says that there is at least one item in the given set that 

has the property in the statement: 

There exists an 𝑥 value such that 𝑥2 + 1 is even can be 

re-written as ∃𝑥 s. t. 𝑥2 + 1 is even. 

 

NEGATION of a statement is formed by putting NOT in front of the verb:  

“There exists an 𝑥 value such that 𝑃(𝑥) holds” (∃𝑥)(𝑃(𝑥)) becomes 

“For all 𝑥 the property 𝑃(𝑥) does not hold” (∀𝑥)(¬𝑃(𝑥)) 

 

COMPOUND statement is a combination of statements linked using if/and/or/then: 

If 𝑎 + 𝑏 = 𝑐 and/or 𝑏 + 𝑐 > 10 then . . .  

 

IMPLICATION/CONDITIONAL statement uses the if/then and breaks it down 

into 3 types. For “If the shape is a square then (⇒) it has 4 sides”: 

1. INVERSE – “If the shape is not a square then it does not have 4 sides”. 

2. CONVERSE – “If the shape has 4 sides then (⇐) it is a square”. 

3. CONTRAPOSITIVE – If the shape does not have 4 sides then it is not a 

square”. 

NB – if the original implication is true then the contrapositive is true, but the 

inverse and converse need not be true. 

 

 

Counter-Examples 
A statement can be disproved (proved to be false) by providing a counter-example. 

 

 2𝑛 + 𝑛 is divisible by 3 for all natural numbers (∀ 𝑛 ∈ N) 

When 𝑛 = 1:          2𝑛 + 𝑛 = 21 + 2 = 3-TRUE 

When 𝑛 = 2:          2𝑛 + 𝑛 = 22 + 2 = 6-TRUE  

When 𝑛 = 3:         2𝑛 + 𝑛 = 23 + 3 = 11-FALSE 

 

2𝑛 + 𝑛 is NOT divisible by 3 when 𝑛 = 3 

so we have found a counter-example 

which proves that the statement is false. 

 

 

Bk2 P3/4 Ex1A 

 Q7, 8 
 

P8 Ex1B Q5a-d 
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Direct Proof 
 

Reminder from finding a formula: 

 1, 2, 3, 4, . . . . .   𝑛 (counting numbers) 

 2, 4, 6, 8, . . . . .   2𝑛 (even numbers) 

 1, 3, 5, 7, . . . . . .  2𝑛 − 1 (odd numbers) 

 3, 6, 9, 12, . . . . .   3𝑛 (multiples of 3) 

 4, 7, 10, 13, . . . .   3𝑛 + 1 

 1, 4, 9, 16, . . . . .   𝑛2 (square numbers) 

 

Also:  (𝑛 − 1), 𝑛, (𝑛 + 1), (𝑛 + 2), (𝑛 + 3) consecutive numbers 

  (2𝑛 − 2), 2𝑛, (2𝑛 + 2)   consecutive even numbers 

  (2𝑛 + 1), (2𝑛 + 3), (2𝑛 + 5)  consecutive odd numbers 

 

 

 

 Let 𝑛 be a natural number. Prove that 𝑛2 + 3𝑛 is always divisible by 2. 

 

In notation form: ∀ 𝑛 ∈ N, 2|𝑛2 + 3𝑛 

2 cases to consider:  

 𝑛 is even i.e. 𝑛 = 2𝑘 

 
𝑛2 + 3𝑛 = (2𝑘)2 + 3(2𝑘)  = 4𝑘2 + 6𝑘 = 2(2𝑘2 + 3𝑘) 

⇒ 𝑛2 + 3𝑛 = 2a ⇒ 2|𝑎2 + 3𝑎 ∀ even numbers 

 

 𝑛 is odd i.e. 𝑛 = 2𝑘 − 1 

 
𝑛2 + 3𝑛 = (2𝑘 − 1)2 + 3(2𝑘 − 1) = 4𝑘2 − 4𝑘 + 1 + 6𝑘 − 3 = 2(2𝑘2 + 𝑘 − 1) 

⇒ 𝑛2 + 3𝑛 = 2𝑎2 + 𝑎 − 1 ⇒ 2|2𝑎2 + 𝑎 − 1 ∀ odd numbers 

 

Thus 2|𝑛2 + 3𝑛, ∀ 𝑛 ∈ N 
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 Prove that the product of 3 consecutive whole numbers (𝑛 + 1)(𝑛 + 2) , 

is always divisible by 3 

 

There are 3 cases to consider. When a whole number is divided by 3 we 

can have remainder 0, remainder 1 or remainder 2 i.e. 𝑛 = 3𝑘, 𝑛 = 3𝑘 + 1  

or 𝑛 = 3𝑘 + 2. 

 

 𝑛 is divisible by 3 

⇒ 𝑛 = 3𝑎, 𝑎 ∈ N 

⇒ 𝑛(𝑛 + 1)(𝑛 + 2) = 3𝑎(3𝑎 + 1)(3𝑎 + 2) = 3[𝑎(3𝑎 + 1)(3𝑎 + 2)] 

⇒ 𝑛(𝑛 + 1)(𝑛 + 2) = 3𝑘 where 𝑘 = 𝑎(3𝑎 + 1)(3𝑎 + 2) 

⇒ 3|𝑛(𝑛 + 1)(𝑛 + 2), ∀𝑛 divisible by 3 

 

 𝑛 has a remainder of 1 when divided by 3 

⇒ 𝑛 = 3𝑎 + 1, 𝑎 ∈ N 

⇒ 𝑛(𝑛 + 1)(𝑛 + 2) = (3𝑎 + 1)(3𝑎 + 2)(3𝑎 + 3) = 3[(3𝑎 + 1)(3𝑎 + 2)(𝑎 + 1)] 

⇒ 𝑛(𝑛 + 1)(𝑛 + 2) = 3𝑘 where 𝑘 = (3𝑎 + 1)(3𝑎 + 2)(𝑎 + 1) 

⇒ 3|𝑛(𝑛 + 1)(𝑛 + 2), ∀𝑛 which have a remainder of 1 when divided by 3 

 

 𝑛 has a remainder of 2 when divided by 3 

⇒ 𝑛 = 3𝑎 + 2, 𝑎 ∈ N 

⇒ 𝑛(𝑛 + 1)(𝑛 + 2) = (3𝑎 + 2)(3𝑎 + 3)(3𝑎 + 4) = 3[(3𝑎 + 2)(𝑎 + 1)(3𝑎 + 4)] 

⇒ 𝑛(𝑛 + 1)(𝑛 + 2) = 3𝑘 where 𝑘 = (3𝑎 + 2)(𝑎 + 1)(3𝑎 + 4) 

⇒ 3|𝑛(𝑛 + 1)(𝑛 + 2), ∀𝑛 which have a remainder of 2 when divided by 3 

 

Case 1 and Case 2 and Case 3  ⇒ ∀𝑛 3|𝑛(𝑛 + 1)(𝑛 + 2), 

 

NB  – If we wish to prove that 6|𝑛(𝑛 + 1)(𝑛 + 2) we need to show: 

 ∀𝑛 2|𝑛(𝑛 + 1)(𝑛 + 2) AND 
 ∀𝑛 3|𝑛(𝑛 + 1)(𝑛 + 2) 

 

- If 𝑝 ⇒ 𝑞 and 𝑞 ⇒ 𝑟 then 𝑝 ⇒ 𝑟 

  

 

 

 

  

Bk2 P10 Ex2A 

 Q3 and 7 
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Proof by Contradiction 
 

1. Whatever we are trying to prove, we assume that the negation is true 

2. Contradict the negation by a set of steps 

3. Since all steps will be valid then the assumption must be false. 

4. If the negation is false then the original statement must be true 
 

 

 
 

 Prove that √2 is not rational. 
 

Assume that the negation is true ⇒ √2 ∈ Q 

⇒ ∃𝑎, 𝑏 ∈ Z s.t. 𝑎 and 𝑏 have no common factors and √2 =
𝑎

𝑏
 

⇒ 𝑎 = 𝑏√2 ⇒ 𝑎2 = 2𝑏2 ⇒ 𝑎2 is even ⇒ 𝑎 is even. 

Let 𝑎 = 2𝑘 where 𝑘 ∈ N 

⇒ 4𝑘2 = 2𝑏2 ⇒ 𝑏2 is even ⇒ 𝑏 is even 

Both 𝑎 and 𝑏 are even ⇒ 𝑎 and 𝑏 have a common factor of 2. 

This contradicts the original assumption so assumption is false. 

Therefore the original statement must be true: √2 ∉ Q 

 
 

 Prove that 
𝑎+𝑏

2
≥ √𝑎𝑏  ∀𝑎, 𝑏 ∈ N. 

 
 

Assume that the negation is true ⇒
𝑎+𝑏

2
< √𝑎𝑏  for some 𝑎, 𝑏 ∈ N. 

⇒ 𝑎 + 𝑏 < 2√𝑎𝑏 ⇒ 𝑎 + 𝑏 < 4𝑎𝑏 ⇒ 𝑎2 + 2𝑎𝑏 + 𝑏2 < 4𝑎𝑏  

⇒ 𝑎2 − 2𝑎𝑏 + 𝑏2 < 0 

⇒ (𝑎 − 𝑏)2 < 0 

 

This is not possible, so assumption is false. 

 

Therefore the original statement must be true ⇒
𝑎+𝑏

2
≥ √𝑎𝑏  ∀𝑎, 𝑏 ∈ N. 
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Proof by Contrapositive 
 

This proof depends on the fact that a statement and its contrapositive 

are equivalent. 



Prove that if 𝑥 = 77 then 𝑥 is not even. 
 

STATEMENT: if 𝑥 is even then it cannot be divided by 2 without a remainder. 

CONTRAPOSITIVE: If 𝑥 cannot be divided by 2 then 𝑥 is not even.  

 

77 cannot be divided by 2 without a remainder. 

⇒ 77 is not even ⇒ 𝑥 is not even. 

 
 

Prove that for 𝑥 ∈ Z, if 5𝑥 + 9 is even then is 𝑥 odd 
 

First we need to write down the contrapositive of the statement: 
 

 For 𝑥 ∈ Z, if 𝑥 is not odd then 5𝑥 + 9 is not even. 

Or 

 For 𝑥 ∈ Z, if 𝑥 is even then 5𝑥 + 9 is odd 

 

We now prove the contrapositive directly.  

Proof: 𝑥 is even so 𝑥 = 2𝑘 for some integer 𝑘. 

So 5𝑥 + 9 = 5(2𝑘) + 9 = 10𝑘 + 9 = 10𝑘 + 8 + 1 = 2(5𝑘 + 4) + 1. 

This is odd since 2(5𝑘 + 4) produces an even number and when we add 1 

it becomes an odd number for all 𝑘. 

 

As the contrapositive has been proven true this means the original 

statement is also true  i.e. for 𝑥 ∈ Z, if 5𝑥 + 9 is even then is 𝑥 odd 
 

 

 

 

 
 

“A common experience for people learning advanced mathematics is to come to 
the end of a proof and think, ‘I understood how each line followed the previous 
one, but somehow I am none the wiser about why  the theorem is true, or how 
anybody thought of this argument’ ”. – Timothy Gowers 

Bk2 P14 Ex3A 

 Q1, 6-8 

 


