Essential knowledge:

1. For matrices: $A=\left(\begin{array}{ccc}1 & 2 & -1 \\ 3 & 0 & 5\end{array}\right), B=\left(\begin{array}{ccc}2 & -1 & 1 \\ 2 & 1 & 0\end{array}\right), C=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$ and $D=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ Find:
(a) $2 A-3 B$
(b) $C A$
(c) $A^{\prime} C$
(d) C^{-1}
(e) D^{3}
2. What value of x makes this matrix singular? $\quad\left(\begin{array}{cc}2 & x \\ -1 & 3\end{array}\right)$
3. Use Gaussian elimination to solve: $\begin{gathered}2 x-y+2 z=1 \\ x+y-2 z=2 \\ x+2 y+4 z=-1\end{gathered}$
4. A is the matrix $\left(\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right)$. For $A^{2}=p A+q I$, find the values of p and q.
5. Write down the 2×2 matrix that represents an anti-clockwise rotation of 45° about the origin.

Unit level:

6. For matrices: $A=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right), B=\left(\begin{array}{ll}1 & p \\ 0 & 3\end{array}\right), C=\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & 2 \\ 2 & q & 3\end{array}\right)$ and $D=\left(\begin{array}{cc}2 & 0 \\ -3 & 5 \\ 8 & r\end{array}\right)$

Find: (a) $4 A-3 B$
(b) $C D+D$
7. Use Gaussian elimination to solve:

$$
\begin{gathered}
x+y+z=10 \\
2 x-y+3 z=4 \\
x+\quad 2 z=20
\end{gathered}
$$

8. For matrices: $\quad E=\left(\begin{array}{cc}4 & -1 \\ -5 & 3\end{array}\right)$ and $F=\left(\begin{array}{ccc}1 & 2 & -1 \\ 3 & 0 & 2 \\ -1 & k-1 & 6\end{array}\right)$
(a) Find E^{-1}
(b) Determine the value(s) of k for which F is singular.

Assessment level:

9. The matrix A is such that $A^{2}=4 A-3 I$, find integers p and q such that $A^{4}=p A+q I$
10. Obtain the 2×2 matrix M associated with an enlargement, scale factor 2 , followed by a clockwise rotation of 60° about O .
11. (a) Use elementary row operations to reduce the following system of equations to upper triangular form

$$
\begin{gathered}
x+y+3 z=1 \\
3 x+a y+z=1 \\
x+y+z=-1
\end{gathered}
$$

(b) Express x and y in terms of the parameter a
(c) Explain what happens when $a=3$
12. Matrices A and B are defined by

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 1 & 2
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
x+2 & x-2 & x+3 \\
-4 & 4 & 2 \\
2 & -2 & 3
\end{array}\right)
$$

(a) Find the product $A B$
(b) Obtain the determinants of A and $A B$
(c) Hence obtain an expression for $\operatorname{det}(B)$

Challenge Questions (optional)

1. The diagram shows an equilateral triangle, a square and a regular pentagon which all share a common vertex. What is the value of θ ?

A 98
B 102
C 106
D 110
E 112
2. The diagram shows a regular hexagon inside a rectangle. What is the sum of the four marked angles?

A 90°
B 120°
C 150°
D 180°
E 210°
