Essential knowledge:

- **1.** Use integration by parts to obtain an expression for:
 - (a) $\int (4x-3)e^{2x} dx$ (b) $\int_0^{\frac{\pi}{4}} x \cos 2x dx$
- 2. Find the general solution of following differential equations:

(a)
$$\frac{dy}{dx} = \frac{y+3}{x^2}$$
 (b) $\frac{dy}{dx} + \frac{y}{x} = 1$ (c) $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$

3. Find the particular solution of following differential equations:

(a)
$$\frac{dy}{dx} = x(y-2) \ x = 0$$
 when $y = 5$ (b) $\frac{dy}{dx} + \frac{2y}{x} = x^2$ $x = 1$ when $y = 1$

<u>Unit level</u>:

- **4.** Using integration by parts, evaluate: $\int_{1}^{e} x \ln x \, dx$
- **5.** Find the general solution of the differential equation: $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$
- **6.** Find the general solution, in the form y = f(x), of the first order linear differential equation: $\frac{dy}{dx} + \frac{x+1}{x}y = e^{-x}$
- 7. Find the particular solution of the second order differential equation:

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0$$
 when $x = 0$, $y = 5$ and $\frac{dy}{dx} = 11$.

Assessment level:

- **8.** Use integration by parts to obtain $\int 8x^2 \sin 4x \, dx$
- **9.** Given that y > -1 and x > -1, obtain the general solution of the differential equation

$$\frac{dy}{dx} = 3(1+y)\sqrt{1+x}$$

Expressing your answer in the form y = f(x)

- **10.** A mathematical biologist believes that the differential equation $x \frac{dy}{dx} 3y = x^4$ models a process. Given that y = 2 when x = 1, find the particular solution, expressing y in terms of x
- **11.** Obtain the general solution of the equation $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$
- 12. Determine the solution of the differential equation

 $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 4\cos x$ which satisfies y(0) = 0 and y'(0) = 1

<u>Challenge Questions</u> (optional)

 What is the smallest prime number that is equal to the sum of two prime numbers and is also equal to the sum of three different prime numbers?

- **3.** The *primorial* of a number is the product of all of the prime numbers less than or equal to that number. For example, the primorial of 6 is $2 \times 3 \times 5 = 30$. How many different whole numbers have a primorial of 210?
 - A1 B2 C3 D4 E5