Applying Calculus skills through

Essential knowledge:

1. Use integration by parts to obtain an expression for:
(a) $\int(4 x-3) e^{2 x} d x$
(b) $\int_{0}^{\frac{\pi}{4}} x \cos 2 x d x$
2. Find the general solution of following differential equations:
(a) $\frac{d y}{d x}=\frac{y+3}{x^{2}}$
(b) $\frac{d y}{d x}+\frac{y}{x}=1$
(c) $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0$
3. Find the particular solution of following differential equations:
(a) $\frac{d y}{d x}=x(y-2) x=0$ when $y=5$
(b) $\frac{d y}{d x}+\frac{2 y}{x}=x^{2} \quad x=1$ when $y=1$

Unit level:

4. Using integration by parts, evaluate: $\int_{1}^{e} x \ln x d x$
5. Find the general solution of the differential equation: $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$
6. Find the general solution, in the form $y=f(x)$, of the first order linear differential equation: $\quad \frac{d y}{d x}+\frac{x+1}{x} y=e^{-x}$
7. Find the particular solution of the second order differential equation:

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=0 \text { when } x=0, y=5 \text { and } \frac{d y}{d x}=11 .
$$

Assessment level:

8. Use integration by parts to obtain $\int 8 x^{2} \sin 4 x d x$
9. Given that $y>-1$ and $x>-1$, obtain the general solution of the differential equation

$$
\frac{d y}{d x}=3(1+y) \sqrt{1+x}
$$

Expressing your answer in the form $y=f(x)$
10. A mathematical biologist believes that the differential equation $x \frac{d y}{d x}-3 y=x^{4}$ models a process. Given that $y=2$ when $x=1$, find the particular solution, expressing y in terms of x
11. Obtain the general solution of the equation $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=0$
12. Determine the solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=4 \cos x \text { which satisfies } y(0)=0 \text { and } y^{\prime}(0)=1
$$

Challenge Questions (optional)

1. What is the smallest prime number that is equal to the sum of two prime numbers and is also equal to the sum of three different prime numbers?
A 7
B 11
C 13
D 17
E 19
2. A 2×3 grid of squares can be divided into 1×2 rectangles in three different ways.

How many ways are there of dividing this shape into 1×2 rectangles?

A 1
B 4
C 6
D 7
E 8
3. The primorial of a number is the product of all of the prime numbers less than or equal to that number. For example, the primorial of 6 is $2 \times 3 \times 5=30$. How many different whole numbers have a primorial of 210 ?
A 1
B 2
C 3
D 4
E 5

