Differentiation 2 – Implicit and Parametric Functions, Logarithmic Differentiation

Explicit function: y is expressed explicitly as a function of x i.e. y is the subject of the formula e.g. y = 2x + 3

Implicit function: y is not expressed explicitly as a function of x i.e. y is not the subject of the formula e.g. y - 2x = 3

Given $3x^2 + 7xy + 9y^2 = 6$, find $\frac{dy}{dx}$ Examples: **1** Differentiate both sides with respect to x $\frac{d}{dx}(3x^2 + 7xy + 9y^2) = \frac{d}{dx}(6)$ $\frac{d}{dx}(3x^2) + \frac{d}{dx}(7xy) + \frac{d}{dx}(9y^2) = \frac{d}{dx}(6)$ $6x + 7\frac{d}{dx}(xy) + 9\frac{d}{dx}(y^2) = 0$

The derivative of y is \$\frac{dy}{dx}\$
Use the chain rule for \$\frac{d}{dx}(y^2)\$: \$\frac{d}{dx}(y)^2 = 2y \times \frac{dy}{dx}\$

• use the product rule for
$$\frac{d}{dx}(xy) - u = x \Rightarrow u' = 1$$
 $v = y \Rightarrow v' = \frac{dy}{dx}$
 $\frac{d}{dx}(xy) = y + x\frac{dy}{dx}$

This give

This gives:

$$6x + 7\left(y + x\frac{dy}{dx}\right) + 9\left(2y\frac{dy}{dx}\right) = 0$$

$$6x + 7y + 7x\frac{dy}{dx} + 18y\frac{dy}{dx} = 0$$
Now make $\frac{dy}{dx}$ the subject:

$$7x\frac{dy}{dx} + 18y\frac{dy}{dx} = -6x - 7y$$
Take $\frac{dy}{dx}$ out as common factor:

$$\frac{dy}{dx}(7x + 18y) = -6x - 7y$$

$$\frac{dy}{dx} = \frac{-6x - 7y}{7x + 18y}$$

NB - Can't differentiate y with respect to x if no x's in the function

- $\frac{d}{dx}y = \frac{dy}{dx}$, $\frac{d}{dx}y^2 = 2y\frac{dy}{dx}$, $\frac{d}{dx}4y^3 = 12y^2\frac{dy}{dx}$, etc.

Treat the y as a bracket, derivative of outside × inside

<u>Second derivative</u> - f''(x) or $\frac{d^2y}{dx^2}$

The 2nd derivative of a function can be used to determine the nature of an SP without the need for a Nature Table:

In general:
$$\frac{d^2y}{dx^2} > 0$$
 then min TP $\frac{d^2y}{dx^2} < 0$ then max TP
 $\frac{d^2y}{dx^2} = 0$ then PI but is it _____ or ___??

Prind the nature of the SPs for the curve $y = 2x^3 - 2x^2 - 2x$ $\frac{dy}{dx} = 6x^2 - 4x - 2 = 2(3x + 1)(x - 1) = 0$ so SPs @ $x = -\frac{1}{3}$ or x = 1 $\frac{d^2y}{dx^2} = 12x - 4$ $x = -\frac{1}{3}$ gives $\frac{d^2y}{dx^2} = -8 \Rightarrow \max TP$ x = 1 gives $\frac{d^2y}{dx^2} = 8 \Rightarrow \min TP$

Second derivative of Implicit Functions

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ in terms of x and y only for $x^2 + 2xy = 1$
Differentiate both sides: $\frac{d}{dx}(x^2 + 2xy) = \frac{d}{dx}(1)$
 $2x + 2\left(x\frac{dy}{dx} + y\right) = 0$
 $2x + 2x\frac{dy}{dx} + 2y = 0$
 $2x\frac{dy}{dx} = -2x - 2y$
 $\frac{dy}{dx} = \frac{-x - y}{x}$

Use the quotient rule and substitute for $\frac{dy}{dx}$ where needed: $u = -x - y \Rightarrow u' = -1 - \frac{dy}{dx} = -1 + \frac{x+y}{x} = \frac{y}{x}$ $v = x \qquad \Rightarrow v' = 1$ $\frac{d^2y}{dx^2} = \frac{u'v - uv'}{v^2} = \frac{\frac{y}{x}x - (-x - y)}{x^2} = \frac{y + x + y}{x^2} = \frac{2y + x}{x^2}$

P38 Ex5 Q1 - 1st Column Q3, 5, 7, 9

Using the Logarithmic Function in Differentiation

Find $\frac{dy}{dx}$ if $y = 4^x$ 4 Take ln of both sides: $\ln y = \ln 4^x$ $\ln y = x \ln 4$ Differentiate both sides: $\frac{d}{dx}(\ln y) = \frac{d}{dx}(x \ln 4)$ $\frac{1}{v}\frac{dy}{dx} = \ln 4$ $\frac{dy}{dx} = y \ln 4$ Make $\frac{dy}{dx}$ the subject: $\frac{dy}{dx} = 4^x \ln 4$ Substitute for y: **6** $y = x^x$, Find $\frac{dy}{dx}$ $\ln y = \ln x^x$ so $\ln y = x \ln x$ $u = x \Rightarrow u' = 1$ $v = \ln x \Rightarrow v' = \frac{1}{r}$ $\frac{1}{y}\frac{dy}{dx} = \ln x + 1 \text{ so } \frac{dy}{dx} = y(\ln x + 1) \text{ so } \frac{dy}{dx} = x^x(\ln x + 1)$ Find $\frac{dy}{dx}$ if $y = \frac{x^2\sqrt{7x-3}}{1+x}$ 6 [would normally need product/quotient rule] $\ln y = \ln \left(\frac{x^2 \sqrt{7x-3}}{1+x} \right)$ $\ln y = \ln(x^2) + \ln(\sqrt{7x - 3}) - \ln(1 + x)$ $\ln y = 2\ln(x) + \frac{1}{2}\ln(7x - 3) - \ln(1 + x)$ $\frac{1}{y}\frac{dy}{dx} = \frac{2}{x} + \frac{1}{2} \times \frac{1}{7x - 3} \times 7 - \frac{1}{1 + x}$ $\frac{1}{v}\frac{dy}{dx} = \frac{2}{x} + \frac{7}{2(7x-3)} - \frac{1}{1+x}$

$$\frac{1}{y}\frac{dy}{dx} = \frac{2 \times 2(7x-3)(1+x) + 7x(1+x) - 2x(7x-3)}{2x(7x-3)(1+x)}$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{4(7x^2+4x-3) + 7x + 7x^2 - 14x^2 + 6x}{2x(7x-3)(1+x)}$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{21x^2+29x-12}{2x(7x-3)(1+x)}$$

$$\frac{dy}{dx} = y \times \frac{21x^2+29x-12}{2x(7x-3)(1+x)}$$

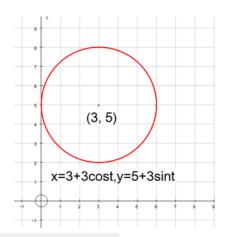
$$\frac{dy}{dx} = \frac{x^2(7x-3)^{\frac{1}{2}}}{1+x} \times \frac{21x^2+29x-12}{2x(7x-3)(1+x)}$$

$$\frac{dy}{dx} = \frac{x}{1+x} \times \frac{21x^2+29x-12}{2(7x-3)^{\frac{1}{2}}(1+x)}$$

$$\frac{dy}{dx} = \frac{x(21x^2+29x-12)}{2(7x-3)^{\frac{1}{2}}(1+x)^2}$$
P40 Ex6
Q1& 21st column
Q3, 4, 5, 8

Parametric Equations

We are most familiar with Cartesian equations where x and y are linked e.g. $y = x^2 + 4$ Sometimes it is more convenient to involve a third variable, t or s or θ , and express both x and y in terms of this variable. Equations x = x(t) and y = y(t) are referred to as **parametric equations** and t is referred to as the **parameter**.



We can convert from parametric equations to Cartesian (or rectangular) equations by eliminating t, s or θ .

This equation is called the corresponding constraint equation

7 x = 2t - 1 and $y = 1 - t^2$

Change the subject of one equation to t:

Substitute for t in the other equation:

Tidy up:

$$y = 1 - \left(\frac{x+1}{2}\right)^2 = 1 - \frac{x^2 + 2x + 1}{4}$$
$$y = \frac{4}{4} - \frac{x^2 + 2x + 1}{4} = \frac{4 - x^2 + 2x + 1}{4} = \frac{3 - x^2 + 2x}{4}$$
$$4y = 3 - x^2 + 2x$$

 $2t = x + 1 \Rightarrow t = \frac{x+1}{2}$

8 $x = 2 \sin 2\theta$ and $y = \cos \theta$

Square and add to eliminate sin/cos:

$$x^{2} + y^{2} = \sin^{2} 2\theta + \cos^{2} \theta$$

$$x^{2} + y^{2} = (2 \sin \theta \cos \theta)^{2} + \cos^{2} \theta$$

$$x^{2} + y^{2} = 4 \sin^{2} \theta \cos^{2} \theta + \cos^{2} \theta$$

$$x^{2} + y^{2} = 4(1 - \cos^{2} \theta) \cos^{2} \theta + \cos^{2} \theta$$

$$x^{2} = 4(1 - y^{2})y^{2} + y^{2} - y^{2}$$

$$x^{2} = 4y^{2} - 4y^{4}$$
P42 Ex7A

Since $y = \cos \theta$ then

<u>1st Derivative of Parametric Equations</u>

We use the Chain Rule to differentiate Parametric Equations:

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} \quad \text{where} \quad \frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} \quad \text{i.e. invert} \quad \frac{dx}{dt} \quad \text{to get} \quad \frac{dt}{dx}$$

$$(9) \quad \text{Find} \quad \frac{dy}{dx} \quad \text{when } x = 4 + 4t \text{ and } y = 3 - 3t^2$$

$$\frac{dx}{dt} = 4 \Rightarrow \frac{dt}{dx} = \frac{1}{4} \qquad \frac{dy}{dt} = -6t$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = -6t \times \frac{1}{4} = -\frac{3t}{2}$$

$$(9) \quad \text{Find a formula for the gradient of the tangent to the curve whose points are given by $x = a(t - \sin t)$ and $y = a(1 - \cos t)$

$$\frac{dx}{dt} = a - a\cos t \Rightarrow \frac{dt}{dx} = \frac{1}{a - a\cos t} \qquad \frac{dy}{dt} = a\sin t$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = a\sin t \times \frac{1}{a - a\cos t} = \frac{a\sin t}{a - a\cos t} = \frac{\sin t}{1 - \cos t}$$

$$(9) \quad \text{Find the coordinates of the points on the curve, } x = 1 - t^2 \text{ and } y = t^3 + t \quad \text{at which the gradient = 2.}$$

$$\frac{dx}{dt} = -2t \Rightarrow \frac{dt}{dx} = -\frac{1}{2t} \qquad \frac{dy}{dt} = 3t^2 + 1$$$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = (3t^2 + 1) \times -\frac{1}{2t} = -\frac{3t^2 + 1}{2t}$$

 $\frac{dy}{dx} = 2 \Rightarrow -\frac{3t^2+1}{2t} = 2$ so $3t^2 + 4t + 1 = 0$ $(3t+1)(t+1) = 0 \Rightarrow t = -1, t = -\frac{1}{3}$

For
$$t = -\frac{1}{3}$$
 the $x = \frac{8}{9}$ and $y = -\frac{10}{27}$ so $\left(\frac{8}{9}, -\frac{10}{27}\right)$

For
$$t = -1$$
 the $x = 0$ and $y = -2$ so $(0, -2)$

2nd Derivative of Parametric Equations:

We make use of the Chain Rule again: $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{dy}{dx} \right) \times \frac{dt}{dx}$

Find
$$\frac{d^2 y}{dx^2}$$
 when $x = at^2$ and $y = 2at$

$$\frac{dx}{dt} = 2at \Rightarrow \frac{dt}{dx} = \frac{1}{2at} \qquad \frac{dy}{dt} = 2a$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = 2a \times \frac{1}{2at} = \frac{1}{t}$$

$$\frac{d^2 y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx}\right) \times \frac{dt}{dx} = \frac{d}{dt} \left(\frac{1}{t}\right) \times \frac{1}{2at} = -\frac{1}{t^2} \times \frac{1}{2at} = -\frac{1}{2at^3}$$
Find $\frac{d^2 y}{dx^2}$ when $x = \tan \theta$ and $y = \sin 2\theta$

$$\frac{dx}{d\theta} = \sec^2 \theta \Rightarrow \frac{d\theta}{dx} = \frac{1}{\sec^2 \theta} = \cos^2 \theta \qquad \frac{dy}{d\theta} = 2\cos 2\theta$$

$$\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx} = 2\cos 2\theta \times \cos^2 \theta = 2\cos 2\theta \cos^2 \theta$$

$$\frac{d^2 y}{dx^2} = \frac{d}{d\theta} \left(\frac{dy}{dx}\right) \times \frac{d\theta}{dx} = \frac{d}{d\theta} (2\cos 2\theta \cos^2 \theta) \times \cos^2 \theta$$

Using the product/chain rule:

$$\frac{d^2 y}{dx^2} = \cos^2 \theta \left(-4 \sin 2\theta \times \cos^2 \theta + 2 \cos 2\theta \times 2 \cos \theta \times -\sin \theta\right)$$
$$\frac{d^2 y}{dx^2} = \cos^2 \theta \left(-4 \sin 2\theta \cos^2 \theta - 2 \cos 2\theta \sin 2\theta\right)$$
$$\frac{d^2 y}{dx^2} = -2 \sin 2\theta \cos^2 \theta \left(2 \cos^2 \theta + \cos 2\theta\right)$$
$$\frac{d^2 y}{dx^2} = -2 \sin 2\theta \cos^2 \theta \left(2 \cos^2 \theta + 2 \cos^2 \theta - 1\right)$$
$$\frac{d^2 y}{dx^2} = -2 \sin 2\theta \cos^2 \theta \left(4 \cos^2 \theta - 1\right)$$
$$\frac{\text{Bk 2 P44 E \times 8A}}{\text{Q1a, 1d, 2a, 2d, 3, 5}}$$

Velocity and Acceleration for parametric functions (Motion in a plane):

Reminder:
$$v = \frac{ds}{dt}$$
and $a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$ For parametric functions:Speed = $|v| = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$ $x'(t) < 0$ $x'(t) > 0$ The direction is given by an angle: $\tan \theta = \frac{y'(t)}{x'(t)}$ $x'(t) < 0$ $x'(t) > 0$ Acceleration = $|a| = \sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2}$ $\tan \theta = \frac{y''(t)}{x''(t)}$ as above for direction

D The motion of a particle is modelled by the equations x = 5t and $y = 5\sqrt{3}t - 5t^2$. x is the horizontal displacement, y is the vertical displacement and t is the time. Find the position and speed of the particle as well as its direction of motion after 1 second.

At
$$t = 1$$
 $x = 5 \times 1 = 5$ $y = 5\sqrt{3} \times 1 - 5(1)^2 = 5\sqrt{3} - 5$
Position is $(5, 5\sqrt{3} - 5)$
 $\frac{dx}{dt} = 5$ $\frac{dy}{dt} = 5\sqrt{3} - 10t$
At $t = 1$ $\frac{dx}{dt} = 5$ $\frac{dy}{dt} = 5\sqrt{3} - 10t$

At
$$t = 1$$
 $\frac{1}{dt} = 5$ $\frac{1}{dt} = 5\sqrt{3} - 10(1) = 5\sqrt{3} - 10$
Speed = $|v| = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{(5)^2 + (5\sqrt{3} - 10)^2} = 5.2ms^{-1}$

Direction: $\tan \theta = \frac{y'(1)}{x'(1)} = \frac{5\sqrt{3}-10}{5} = -0.2679$

 $\theta = 165^{\circ} \text{ or } \theta = 345^{\circ}$

Since x'(t) > 0 and y'(t) < 0 then $\theta = 345^{\circ}$ is the direction

Bk2 P50 Ex1

Odd numbers