Unit 2: Applications in Algebra and Calculus (H7X1 77)

Factorials and the Binomial Theorem

Pascal's triangle:

Using Pascal's Triangle we can quickly expand brackets of the type $(x + y)^n$

e.g.
$$(x + y)^4 = 1x^4y^0 + 4x^3y^1 + 6x^2y^2 + 4x^1y^3 + 1x^0y^4$$

= $x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$

Note: the powers of the first term decrease from 4 to zero and vice versa

Reminder: any value to an even number power gives a positive answer and a negative to an odd number power gives a negative answer

Now try "THE BINOMIAL THEOREM 1" worksheet (1st column).

6 10 10 5

84 126 126 84 36

1 10 45 120 210 252 210 120 45 10 1

The co-efficients of the expansions can be calculated without using Pascal's Triangle using the Combination Function:

$${}^{n}C_{r} = \frac{n!}{r! (n-r)!}$$

This is one of a group of functions which involve factorials - see below.

Factorial Function: $n! = n \times (n-1) \times (n-2) \times \dots \times 3 \times 2 \times 1$ $n \in W$

e.g. $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$

This can be used to calculate the number of different ways 5! = 120 that 5 people can be sat on a bench -

<u>Permutation Function:</u> ${}^{n}P_{r} = \frac{n!}{(n-r)!}$

2

How many ways can 1st, 2nd and 3rd place be awarded within a group of 6 people? ${}^{6}P_{3} = \frac{6!}{(6-3)!} = \frac{6!}{3!} = 120$

We are choosing 3 from 6 then considering how 6 nPr 3 120 many ways the 3 can be arranged.

<u>Combination Function:</u> ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

From a palette of 7 colours, pick 4 to mix. How many ways can this be done?

We need not consider order as the order we mix the paint doesn't matter.

Another way of writing ${}^{n}C_{r}$ is $\binom{n}{r}$ which is used in the notation for expanding a bracket when not using Pascal's Triangle. It is known as "The Binomial Theorem".

Binomial Theorem:

2

1

$$(x+y)^{n} = \binom{n}{0} x^{n} y^{0} + \binom{n}{1} x^{n-1} y^{1} + \binom{n}{2} x^{n-2} y^{2} + \dots + \binom{n}{n} x^{n-n} y^{n}$$

It appears in the AH **Binomial theorem** $(a+b)^n = \sum_{r=0}^n {n \choose r} a^{n-r} b^r$ where ${n \choose r} = {^nC_r} = \frac{n!}{r!(n-r)!}$ Formula Sheet as:

 Σ is the Greek letter "sigma" and stands for sum of:

$$\sum_{r=1}^{5} n = 1 + 2 + 3 + 4 + 5 \qquad \sum_{i=0}^{6} n^2 = 0^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2$$

Expand $(2+3x)^5$ using the binomial theorem Examples:

$$(2+3x)^5 = \sum_{r=0}^{5} {5 \choose r} (2)^{5-r} (3x)^r = {5 \choose 0} 2^5 + {5 \choose 1} 2^4 (3x) + {5 \choose 2} 2^3 (3x)^2 + {5 \choose 3} 2^2 (3x)^3 + {5 \choose 4} 2 (3x)^4 + {5 \choose 5} (3x)^5$$
$$= 32 + 240x + 720x^2 + 1080x^3 + 810x^4 + 243x^5$$

Expand $(x-2)^4$ using the binomial theorem

$$(x-2)^{4} = \sum_{r=0}^{4} {4 \choose r} (x)^{4-r} (-2)^{r} = {4 \choose 0} x^{4} + {4 \choose 1} x^{3} (-2) + {4 \choose 2} x^{2} (-2)^{2} + {4 \choose 3} x^{1} (-2)^{3} + {4 \choose 4} (-2)^{4}$$

$$= x^{4} - 8x^{3} + 24x^{2} - 32x + 16$$
Now try "THE
BINOMIAL THEOREM
user labors + (1st or lump)

2"

Find the x^7 term in the expansion of $(1 + x)^{10} - 7^{th}$ term needed ₿

$${}^{10}C_7(1)^3(x)^7 = 120x^7$$

$$[10 \text{ nCr } 7]$$

$$[10 \text{ nCr } 7$$

Identify the y^3 term in the expansion of $\left(y - \frac{5}{y}\right)^7$ – Harder!! We solve this by finding the <u>GENERAL TERM</u> for this expansion and simplifying:

$$\left(y - \frac{5}{y}\right)^{7} = \sum_{r=0}^{7} {\binom{7}{r}} (y)^{7-r} \left(\frac{5}{y}\right)^{r} = \sum_{r=0}^{7} {\binom{7}{r}} (y)^{7-r} (5)^{r} (y^{-1})^{r}$$
$$= \sum_{r=0}^{7} {\binom{7}{r}} (y)^{7-r} (5)^{r} (y)^{-r} = \sum_{r=0}^{7} {\binom{7}{r}} (y)^{7-2r} (5)^{r}$$

4

For the y^3 term: 7 - 2r = 3 giving r = 2 so we need the 2^{nd} term: ${}^7C_2(y)^5 \left(-\frac{5}{y}\right)^2 = 21y^5 \left(\frac{25}{y^2}\right) = 525y^3$

5 Identify the term independent of x in the expansion of $\left(2x + \frac{1}{x}\right)^6$ Find the <u>GENERAL TERM</u> for this expansion and simplify:

$$\left(2x + \frac{1}{x}\right)^6 = \sum_{r=0}^6 \binom{6}{r} (2x)^{6-r} \left(\frac{1}{x}\right)^r = \sum_{r=0}^6 \binom{6}{r} (2)^{6-r} (x)^{6-r} (x^{-1})^r$$
$$= \sum_{r=0}^6 \binom{6}{r} (2)^{6-r} (x)^{6-r} (x)^{-r} = \sum_{r=0}^6 \binom{6}{r} (2)^r (x)^{6-2r}$$

For the x^0 term: 6 - 2r = 0 giving r = 3 so we need the 3^{rd} term:

Binomial Theorem - General Term worksheet ${}^{6}C_{3}(2x)^{3}\left(\frac{1}{x}\right)^{3} = 20 \times 8x^{3} \times \left(\frac{1}{x^{3}}\right) = 160$ P9/10 Ex3A Q1, 3, 4, 5

6 Expand $(x + 1)^2(2 + x)^3$ using the binomial theorem.

Expand each bracket separately:

$$(x+1)^2 = x^2 + 2x + 1$$

(2+x)³ = $\binom{3}{0} 2^3 + \binom{3}{1} 2^2 x + \binom{3}{2} 2x^2 + \binom{3}{3} x^3 = 8 + 12x + 6x^2 + x^3$

$$(x + 1)^{2}(2 + x)^{3} = (x^{2} + 2x + 1)(8 + 12x + 6x^{2} + x^{3})$$

= $8x^{2} + 12x^{3} + 6x^{4} + x^{5} + 16x + 24x^{2} + 12x^{3} + 2x^{4} + 8 + 12x + 6x^{2} + x^{3}$
= $8 + 28x + 38x^{2} + 25x^{3} + 8x^{4} + x^{5}$

Find the co-efficient of x^5 in the expansion of $(1 + x)^4(1 - 2x)^3$

The x^5 terms are found with the following combinations:

 x^2 in the 1st expansion, $\binom{4}{2}x^2$, with $(-2x)^3$ in the 2nd expansion, $\binom{3}{0}(-2x)^3$ x^3 in the 1st expansion, $\binom{4}{1}x^2$, with $(-2x)^2$ in the 2nd expansion, $\binom{3}{1}(-2x)^3$ x^4 in the 1st expansion, $\binom{4}{0}x^2$, with (-2x) in the 2nd expansion, $\binom{3}{2}(-2x)$

$$\binom{4}{2} x^2 \binom{3}{0} (-2x)^3 + \binom{4}{1} x^2 \binom{3}{1} (-2x)^3 + \binom{4}{0} x^2 \binom{3}{2} (-2x)$$
$$= 6x^2 \cdot -8x^3 + 4x^3 \cdot 12x^2 + x^4 \cdot -6x = 6x^5$$

Find the greatest term in the expansion of $(1 + 3x)^{18}$ when $x = \frac{3}{4}$ 8 $\left(1+\frac{3}{4}\right)^{18} = 1+\binom{18}{1}\binom{3}{4}+\binom{18}{2}\binom{3}{4}^2+\binom{18}{2}\binom{3}{4}^3+\binom{18}{4}\binom{3}{4}^4+\dots$

= 1 + 13.5 + 86.1 + 344.3 + 979.2 + 2056.3 + 3341.5 + 4137 + 3650.6 + ...

Numbers are starting to decrease now so the 9^{th} term is the greatest: $\binom{18}{8}(1)^9 \left(\frac{3}{4}\right)^9$ P11/12 Ex3B

Q1-11 (odd numbers)

P13 Ex4

Q1 & 3

Calculate 0.9⁷ correct to 2 decimal places. 9

$$0.9^{7} = (1 - 0.1)^{7} = 1 + {\binom{7}{1}}(-0.1) + {\binom{7}{2}}(-0.1)^{2} + {\binom{7}{3}}(-0.1)^{4} + \dots$$
$$= 1 - 0.7 + 0.21 - 0.035 + 0.0035 - \dots$$

(Numbers are becoming insignificant as they are beyond the 2 d.p. asked for)

= 0.475 = 0.48

Problem solving with Combination Function:

We could be asked to work backwards e.g. find the value of n for which $\binom{n}{2} = 55$

$$\binom{n}{2} = \frac{n!}{2! (n-2)!} = \frac{n(n-1)(n-2) \times \dots \times 3 \times 2 \times 1}{2 \times 1 \times (n-2)(n-3) \times \dots \times 3 \times 2 \times 1} = \frac{n(n-1)}{2} = 55$$

Rearranging we get: $n^2 - n - 110 = (n-11)(n+10) = 0$

$$n \neq -11$$
 so $\underline{n=10}$

Commonly used relationships:

 $n \neq -11 \text{ so } \underline{n = 10}$ $\binom{n}{r} = \binom{n}{n-r} \text{ - symmetry in Pascal's Triangle}$

 $\binom{n}{r-1} + \binom{n}{r} = \binom{n+1}{r} - e \cdot g \cdot \frac{}{6}C_3 + \frac{}{6}C_4$ P7/8 Ex2B Q2, 4, 6, 7 Sum of 2 consecutive coefficients giving coefficient below