Unit 3: Geometry, Proof and Systems of Equations (H7X3 77)

Applying Algebraic skills to Number Theory

The Euclidean Algorithm

The **greatest common divisor** (gcd) of two integers is the same as the hcf (highest common factor)

The notation (a, b) is used to denote the gcd of a and b .

The hcf of 2 (or more) integers was found initially by writing out lists of factors:

Factors of 12 - 1, 2, 3, 4, 6, 12

Factors of 30 - 1, 2, 3, 5, 6, 15, 30

Common factors were underlined and the highest offered as the answer - $(12,30) = 6$

Another method was to use prime factor trees:

The common prime factors (3 and 2) are then multiplied to give the hcf $-3 \times 2 = 6$

The Euclidean Algorithm gives us another method for this:

Write the larger number as a product of the smaller one - $a = q \times b + r$

 $30 = 2 \times 12 + 6$

Now express *b* in terms of r : $12 = 2 \times 6 + 0$

When $r = 0$ then the gcd is the last non-zero remainder: $gcd(12,30) = 6$

O Find the gcd of 424 and 132

 $424 = 3 \times 132 + 28$ $132 = 4 \times 28 + 20$ $28 = 1 \times 20 + 8$ $20 = 2 \times 8 + 4$ $8 = 2 \times 4 + 0$

Last non-zero remainder is 4 so $gcd(424, 132) = 4$

This works since the gcd must also be a factor of all the remainders:

 $(424,132) = (132,28) = (28,20) = (20,8) = (8,4) = 4$

2 Find the gcd of 280 and 117

 $280 = 2 \times 117 + 46$ $117 = 2 \times 46 + 25$ $46 = 1 \times 25 + 21$ $25 = 1 \times 21 + 4$ $21 = 5 \times 4 + 1$ $4 = 4 \times 1 + 0$

Last non-zero remainder is 1 so $gcd(280,117) = 1$

If $gcd(a, b) = 1$ then integers a and b are said to be **co-prime** or **relatively prime**.

The graphic calculator has a "gcd" function built in:

For 3 integers, find the gcd of the smallest two first then the gcd of the answer with the largest integer.

6 Find the gcd of 259, 222 and 185

 $222 = 1 \times 185 + 37$ $185 = 5 \times 37 + 0$

 $gcd(222, 185) = 37$

Bk3 P145 Ex4 $Q1-3(1st column)$ $259 = 7 \times 37 + 0$

 $gcd(259,222,185) = 37$

DIOPHANTINE EQUATIONS

Euclid's Algorithm can also be used to find integer solutions to equations of the form:

$$
ax + by = kd \qquad \text{where } d = (a, b)
$$

These types of equations are known as Diophantine Equations

NB - the AH course does not go beyond $k = 1$ i.e. $ax + by = d$

 Θ Use the Euclidean algorithm to find integers x and y such that

$$
149x + 139y = 1
$$

Use the algorithm as before but re-write each calculation making the remainder, , the subject:

Use these new equations in reverse order and substitute for each remainder:

 $1 = 10 - 1 \times 9$ Substitute $9 = 139 - 13 \times 10$

 $1 = 10 - 1 \times (139 - 13 \times 10) = 14 \times 10 - 1 \times 139$

Substitute 10 = 149 − 1 × 139

 $1 = 14 \times (149 - 1 \times 139) - 1 \times 139 = 14 \times 149 - 15 \times 139$

i.e. $14 \times 149 - 15 \times 139 = 1$ so $x = 14$ and $y = -15$

 \bullet Use the Euclidean algorithm to show that (29,113) = 1 where (a, b) denotes the highest common factor of a and b . Hence find integers x and y such that $29x + 113y = 1$

Working backwards and substituting:

$$
1 = 3 - 1 \times 2
$$
 Substitute $2 = 26 - 8 \times 3$

$$
1 = 3 - 1 \times (26 - 8 \times 3) = 9 \times 3 - 1 \times 26
$$

Substitute $3 = 29 - 1 \times 26$

Substitute
$$
3 = 29 - 1 \times 26
$$

$$
1 = 9 \times (29 - 1 \times 26) - 1 \times 26 = 9 \times 29 - 10 \times 26
$$

Substitute 26 = 113 − 3 × 29

$$
1 = 9 \times 29 - 10 \times (113 - 3 \times 29) = 12 \times 29 - 10 \times 113
$$

i.e.
$$
12 \times 29 - 10 \times 113 = 1
$$
 so $x = 12$ and $y = -10$

CHANGING NUMBER BASES

In Maths we use base 10 $(base_{10})$ and you may be aware that computers use binary or base 2 ($base_2$) and hexadecimal ($base_{16}$) is used in computer programming.

For base 10 we have column headings:

For base 2 we have column headings:

=8+1=9

and so on \ldots

O Change $132₅$ to base 10

 $1 \times 5^2 + 3 \times 5^1 + 2 \times 5^0 = 25 + 15 + 2 = 42$

 \bullet Change 436₇ to base 10

 $4 \times 7^2 + 3 \times 7^1 + 6 \times 7^0 = 4 \times 49 + 3 \times 7 + 6 = 223$

The Euclidean algorithm can be used to change numbers in base 10 to other base numbers.

 \bullet Change 1136₁₀ to base 6

Divide the number by the new base value leaving the answer as a quotient and a remainder : $1136 \div 6 = 189r2$

Repeat this with each quotient until it equals zero: $189 \div 6 = 31r3$ $31 \div 6 = 5r1$ $5 \div 6 = 0r5$

Now read the denominators from bottom to top: $5132₆$

 \bullet Convert 2213₄ to base 5

Convert to base 10 first then to the other base value:

 $2213_4 = 2 \times 4^3 + 2 \times 4^2 + 1 \times 4^1 + 3 \times 4^0 = 167$

 $167 \div 5 = 33r2$ $33 \div 5 = 6r3$ $6 \div 5 = 1r1$ $1 \div 5 = 0r1$

Hence $2213_4 = 1132_5$

