techniques of Differentiation part 2

Essential knowledge:

1. Using Implicit Differentiation:
(a) $x y+y^{2}=2$ find $\frac{d y}{d x}$
(b) $x y-x=4$ find $\frac{d^{2} y}{d x^{2}}$
2. Using Logarithmic Differentiation:
(a) $y=3^{x}$ find $\frac{d y}{d x}$
(b) $y=x^{2 x}$ find $\frac{d y}{d x}$
3. Using parametric differentiation:
(a) $x=2 \sec \theta$ and $y=3 \sin \theta$ find $\frac{d y}{d x}$
(b) $x=t^{2}+t+1$ and $y=2 t^{2}-t+1$ find $\frac{d^{2} y}{d x^{2}}$

Unit level:

4. If $y^{3}+3 x y-3 x^{2}=5$, use implicit differentiation to find $\frac{d y}{d x}$
5. A curve is given by the parametric equations $x=5 \cos \theta$ and $y=5 \sin \theta$. Find $\frac{d y}{d x}$ in terms of θ.
6. Find the speed of a particle defined by the following pair of parametric equations when $t=\frac{\pi}{8}$:

$$
x=\cos 2 t \quad y=\sin 2 t
$$

Assessment level:

7. Given the equation $2 y^{2}-2 x y-4 y+x^{2}=0$ of a curve, obtain the x coordinate of each point at which the curve has a horizontal tangent.
8. The curve $y=x^{2 x^{2}+1}$ is defined for $x>0$. Obtain the values of y and $\frac{d y}{d x}$ at the point where $x=1$.
9. Calculate the gradient of the curve defined by $\frac{x^{2}}{y}+x=y-5$ at the point $(3,-1)$
10. Given $y=(x+1)^{2}(x+2)^{-4}$ and $x>0$, use logarithmic differentiation to show that $\frac{d y}{d x}$ can be expressed in the form $\left(\frac{a}{x+1}+\frac{b}{x+2}\right) y$, stating the values of the constants a and b.

Challenge Questions (optional)

1. Steve travelled 150 miles on a motorbike and used 10 litres of petrol. Given that 1 gallon ≈ 4.5 litres, roughly how many miles per gallon did Steve achieve on his journey?
A 10
B 20
C 40
D 50
E 70
2. A triangle has two edges of length 5 . What should be chosen for the third side of the triangle so as to maximize the area within the triangle?
A 5
B 6
C $5 \sqrt{2}$
D 8
E $5 \sqrt{3}$
3. Suppose that $x-\frac{1}{x}=y-\frac{1}{y}$ and $x \neq y$. Which is the value of $x y$?
A 4
B 1
C-1
D - 4
E More information is needed
