Applying Calculus skills through
techniques of Differentiation part 1
Essential knowledge:
1. Use the chain rule to differentiate:
(a)
$$e^{(\tan x)}$$
 (b) $\tan^{-1}(3x^2)$
2. Use the product rule to differentiate:
(a) $\sin^{-1}x \sec x$ (b) $x \ln x$
3. Use the quotient rule to differentiate:
(a) $\frac{x^2+2x+1}{3x-1}$ (b) $\frac{(1-2x)^3}{x^3}$
Unit level:
4. Find the derivative of:
(a) $f(x) = e^{(x^2 + \csc x)}$ (b) $g(x) = \frac{\sec 4x}{x+2}$
(c) $y = 3x^3 \cot x$ (d) $y = \sec^2(2x)$

-N

Assessment level:

- **5.** Given that $f(x) = \sqrt{x} \exp(-x)$, $x \ge 0$ obtain and simplify f'(x)
- **6.** Differentiate $g(x) = \frac{\tan^{-1}(2x)}{1+4x^2}$
- 7. Given that $f(x) = (x + 1)(x 2)^3$, obtain the values of x for which f'(x) = 0
- **8.** A particle is moving in a straight line, so that after *t* seconds, it's displacement *x* metres from a fixed point *0* is given by:

$$x = 9t + 3t^2 - t^3$$

- (a) Find the initial displacement, velocity and acceleration of the particle.
- (b) Find the time at which the particle is instantaneously at rest.

Challenge Questions (optional)

1. Which of the following is the equivalent to (x + y + z)(x - y - z)?

A
$$x^2 - y^2 - z^2$$
 B $x^2 - y^2 + z^2$ **C** $x^2 - xy - xz - z^2$
D $x^2 - (y+z)^2$ **E** $x^2 - (y-z)^2$

2. One of the following is equal to $\sqrt{9^{16x^2}}$ for all values of x. Which one?

A 3^{4x} **B** 3^{4x^2} **C** 3^{8x^2} **D** 9^{4x} **E** 9^{8x^2}

3. A Mersenne prime is a prime of the form: $2^p - 1$, where p is also prime. One of the following is **not** a Mersenne prime. Which one is it?

