Applying Geometric skills

AH Mathematics HW

 to Complex Numbers
Calculators can be used but working must be shown

Essential knowledge:

1. For the complex numbers $z_{1}=2+2 i$ and $z_{2}=\sqrt{3}-i$

Find the exact values of:
(a) $z_{1}-\overline{z_{2}}$
(b) $z_{1} z_{2}$
(c) $\frac{z_{1}}{z_{2}}$
(d) $z_{1}{ }^{3}$
(e) $\left|z_{2}\right|$
(f) $\operatorname{Arg} Z_{1}$
2. Find equivalent Cartesian complex numbers for:
(a) $z=3\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
(b) $|z|=4$ and $\operatorname{Arg} z=\frac{\pi}{3}$
3. Describe the locus of the points on the complex plane with restrictions:
(a) $|z|=3$
(b) $\operatorname{Arg} z=1$
4. For the complex number $z=9\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$, Find the values of:
(a) z^{2}
(b) \sqrt{z}
using DeMoivre's Theorem
5. Show that $z=-i$ is a solution of $z^{4}+4 z^{3}+3 z^{2}-4 z+2=0$

Unit level:

6. Given $z=-\sqrt{3}+i$, write z in polar form.
7. Convert $z=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$ into Cartesian form and plot z on an Argand diagram.
8. A complex number z has modulus 1 and argument $-\frac{\pi}{6}$
(a) Determine z in Cartesian form using exact values.
(b) Plot z on an Argand Diagram.

Assessment level:

9. Identify the locus in the complex plane given by $|z-i|=2$ and show in a diagram the region given by $|z-i| \leq 2$.
10. Given that $w=\cos \theta+i \sin \theta$, find $\frac{1}{w}$ using DeMoivre's Theorem.
11. Given the equation $z+2 i \bar{z}=8+7 i$, express z in the form $z=x+i y$.
12. Show that $z=3+3 i$ is a root of the equation $z^{3}-18 z+108=0$ and obtain the remaining roots of the equation.
13. Express -1 as a complex number in polar form and hence determine the solutions to the equation $z^{4}+1=0$.
14. Let $z=\cos \theta+i \sin \theta$
(a) Use the binomial expansion to find z^{4}
(b) Use DeMoivre's theorem to find another expression for z^{4}
(c) Hence show that: $\frac{\cos 4 \theta}{\cos ^{2} \theta}=p \cos ^{2} \theta+q \sec ^{2} \theta+r-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ and find the values of p, q and r.

Challenge Questions (optional)

1. Which of the following has the greatest value?
A $\cos 50^{\circ}$
B $\sin 50^{\circ}$
C $\tan 50^{\circ}$
D $\frac{1}{\sin 50^{\circ}}$
E $\frac{1}{\cos 50^{\circ}}$
2. A square has vertices at $(0,0),(1,0),(1,1)$ and $(0,1)$. Graphs of the following equations are drawn on the same set of axes as the square:

$$
x^{2}+y^{2}=1 \quad y=x+1 \quad y=-x^{2}+1 \quad y=x \quad y=\frac{1}{x}
$$

How many of the graphs pass through exactly two vertices of the square?
A 1
B 2
C 3
D 4
E 5

