Calculators can be used but working must be shown

Essential knowledge:

- **1.** For the complex numbers $z_1 = 2 + 2i$ and $z_2 = \sqrt{3} i$ Find the exact values of:
 - (a) $z_1 \overline{z_2}$ (b) $z_1 z_2$ (c) $\frac{z_1}{z_2}$ (d) z_1^3 (e) $|z_2|$ (f) $Arg z_1$
- **2.** Find equivalent Cartesian complex numbers for: (a) $z = 3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$ (b) |z| = 4 and $Arg \ z = \frac{\pi}{3}$
- **3.** Describe the locus of the points on the complex plane with restrictions:

(a) |z| = 3 (b) Arg z = 1

4. For the complex number $z = 9\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$, Find the values of:

(a) z^2 (b) \sqrt{z} using **DeMoivre's Theorem**

5. Show that z = -i is a solution of $z^4 + 4z^3 + 3z^2 - 4z + 2 = 0$

<u>Unit level</u>:

- **6.** Given $z = -\sqrt{3} + i$, write z in polar form.
- **7.** Convert $z = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ into Cartesian form and plot z on an Argand diagram.
- **8.** A complex number z has modulus 1 and argument $-\frac{\pi}{\epsilon}$
 - (a) Determine *z* in Cartesian form using exact values.
 - (b) Plot z on an Argand Diagram.

Assessment level:

- **9.** Identify the locus in the complex plane given by |z i| = 2 and show in a diagram the region given by $|z i| \le 2$.
- **10.** Given that $w = \cos \theta + i \sin \theta$, find $\frac{1}{w}$ using DeMoivre's Theorem.

- **11.** Given the equation $z + 2i\overline{z} = 8 + 7i$, express z in the form z = x + iy.
- **12.** Show that z = 3 + 3i is a root of the equation $z^3 18z + 108 = 0$ and obtain the remaining roots of the equation.
- **13.** Express -1 as a complex number in polar form and hence determine the solutions to the equation $z^4 + 1 = 0$.
- **14.** Let $z = \cos \theta + i \sin \theta$
 - (a) Use the binomial expansion to find z^4
 - (b) Use DeMoivre's theorem to find another expression for z^4
 - (c) Hence show that: $\frac{\cos 4\theta}{\cos^2 \theta} = p \cos^2 \theta + q \sec^2 \theta + r \frac{\pi}{2} < \theta < \frac{\pi}{2}$ and find the values of p, q and r.

Challenge Questions (optional)

1. Which of t	he following h	as the greates	t value?	
A cos 50°	B sin50°	C tan50°	$\mathbf{D} \frac{1}{\sin 50^\circ}$	$\mathbf{E} \frac{1}{\cos 50^{\circ}}$

2. A square has vertices at (0, 0), (1, 0), (1, 1) and (0, 1). Graphs of the following equations are drawn on the same set of axes as the square:

 $x^{2} + y^{2} = 1$ y = x + 1 $y = -x^{2} + 1$ y = x $y = \frac{1}{x}$

How many of the graphs pass through exactly two vertices of the square?

A 1 **B** 2 **C** 3 **D** 4 **E** 5