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Unit 3: Geometry, Proof and Systems of Equations (H7X3 77) 
 
Applying Geometric skills to Complex Numbers 

 

C is the set of complex numbers. 
 

𝑧 denotes a complex number and is made up of two parts, a real part and an imaginary 

part. 

 

𝑧 = 𝑎 + 𝑏𝑖 where 𝑎 = 𝑅𝑒(𝑧) and 𝑏 = 𝐼𝑚(𝑧) with 𝑖2 = −1 ⇒ 𝑖 = √−1, 𝑖 ∈ 𝑅 

 

𝑧̅ = 𝑎 − 𝑏𝑖 is the complex conjugate of 𝑧 , NB -  𝑧𝑧̅ = 𝑎2 + 𝑏2
 

 

ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION 
 

For 𝑧1 = 2 + 4𝑖 and 𝑧2 = 3 + 2𝑖 
 

𝑧1 + 𝑧2 = 2 + 4𝑖 + 3 + 2i = 5 + 6𝑖   Add real parts then add imaginary parts 
 

𝑧1 − 𝑧2 = 2 + 4𝑖 − 3 − 2i = −1 + 2𝑖 Subtract real then imaginary parts 
 

𝑧1𝑧2 = (2 + 4𝑖)(3 + 2i) = 6 + 4𝑖 + 12𝑖 + 8𝑖2 = 6 + 16𝑖 − 8 = −2 + 16𝑖


 
 

𝑧1 ÷ 𝑧2 =
𝑧1

𝑧2
=

2+4𝑖

3+2𝑖
×

3−2𝑖

3−2𝑖
 multiply by the complex conjugate 

 

 =
(2+4𝑖)(3−2𝑖)

(3+2𝑖)(3−2𝑖)
=

6+8𝑖−8𝑖2

9−4𝑖2 =
14+8𝑖

13
=

2

13
(7 + 4𝑖) 
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Powers of 𝑧 
 

We use the Binomial Theorem for whole number powers 

 

 Find 𝑧4 if 𝑧 = 2 + 𝑖  
 

(2 + 𝑖)4 = 24 + 4(2)3𝑖 + 6(2)2𝑖2 + 4(2)𝑖3 + 𝑖4 = 16 + 32𝑖 − 24 − 8𝑖 + 1 = −7 + 24𝑖 
 

 For = 3 − 2𝑖 , find 𝑧−2 

 

𝑧−2 =
1

𝑧2
=

1

(3 − 2𝑖)2
=

1

9 − 12𝑖 − 4
=

1

5 − 12𝑖
×

5 + 12𝑖

5 + 12𝑖
=

13 + 12𝑖

169
=

1

169
(5 + 12𝑖) 

 

 

 For = 5 + 12𝑖 , find 𝑧
1

2 

 

Let 𝑎 + 𝑏𝑖 = √5 + 12𝑖 where 𝑎 and 𝑏 are real ⇒ (𝑎 + 𝑏𝑖)2 = 5 + 12𝑖 

 
⇒ 𝑎2 + 2𝑎𝑏𝑖 − 𝑏2 = 5 + 12𝑖 

 

Equating real and imaginary parts we get:  𝑎2 − 𝑏2 = 5 and 2𝑎𝑏 = 12 

 

Re-arranging 2𝑎𝑏 = 12 we get 𝑎 =
6

𝑏
 which we substitute into 𝑎2 − 𝑏2 = 5 

 

This gives (
6

𝑏
)

2

− 𝑏2 = 5 which we multiply through by 𝑏2 to get 36 − 𝑏4 = 5𝑏2 

 

Re-arranging we get 𝑏4 + 5𝑏2 − 36 = 0 which factorises to (𝑏2 − 4)(𝑏2 + 9) = 0 

 

Since 𝑏2 + 9 = 0 has no solution then 𝑏 = ±2 leading to 𝑎 = ±3 

 

So √5 + 12𝑖 = 3 + 2𝑖 or √5 + 12𝑖 = −3 − 2𝑖 

 

 

 

 

 

DeMoivre’s theorem offers us an alternative method to find powers of 

complex numbers but before we learn to use it, we must complete some 

prior learning.  
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ARGAND DIAGRAMS 
 

The complex number 𝑧 = 𝑥 + 𝑖𝑦 can be 

plotted on an Argand diagram as the 

point (𝑥, 𝑦). 
 

𝑟 is the length of the line from the 

origin to the point (𝑥, 𝑦). 𝑟 = √𝑥2 + 𝑦2 
 

This is called the modulus of 𝑧 and is 

denoted |𝑧| 
 

The size of rotation is called the argument of 𝑧 and is denoted by arg 𝑧, 𝜃 = arg 𝑧 
 

𝜃 = tan−1 (
𝑦

𝑥
) with the domain restricted to −𝜋 < 𝜃 ≤ 𝜋  (−180° < 𝜃 ≤ 180°) 

 

POLAR FORM: Using right-angled triangle trigonometry we can 

write that 𝑥 = 𝑟 cos 𝜃 and 𝑥 = 𝑟 sin 𝜃 

𝜋 − 𝜃 𝜃 

−𝜋 + 𝜃 −𝜃 

 
 

 Express 𝑧 = 3 + 4𝑖 in polar form. 
 

(3,4) is in the 1st quadrant |𝑧| = √32 + 42 = 5 
 

tan 𝜃 =
4

3
= 0.927 so  𝑧 = 5(cos 0.927 + 𝑖 sin 0.927) 

 

 Express 𝑧 = −3 − 4𝑖 in polar form. 
 

(−3, −4) is in the 3rd quadrant  |𝑧| = √(−3)2 + (−4)2 = 5 
 

tan 𝜃 =
−4

−3
= 0.927 ⇒ 𝜃 = −𝜋 + 0.927 = −2.215 

 

 so 𝑧 = 5(cos(−2.215) + 𝑖 sin(−2.215)) = 5(cos 2.215 − 𝑖 sin 2.215) 
 



Express 𝑧 = −1 + 𝑖 in polar form 𝑟(cos 𝜃° + 𝑖 sin 𝜃°). 
 

(−1,1) is in the 2nd quadrant   

 

|𝑧| = √(−1)2 + (1)2 = √2 
 

tan 𝜃 =
1

1
= 45° ⇒ 𝜃 = 180 − 45 = 135° 

 

 so 𝑧 = √2(cos 135° + 𝑖 sin 135°) 
 

So 𝑧 = 𝑥 + 𝑖𝑦  becomes  𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 
 

This is known as the polar form of 𝑧. 
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Find the complex number with |𝑧| = 2,  and arg 𝑧 =
𝜋

3
,  

 

𝜋

3
= tan−1 (

𝑦

𝑥
) ⇒

𝑦

𝑥
= tan

𝜋

3
= √3 this gives ⇒

𝑦

𝑥
= √3 ⇒ 𝑦 = √3𝑥 

 

|𝑧| = √𝑥2 + 𝑦2 = 2 squaring both sides gives 𝑥2 + 𝑦2 = 4 
 

Substituting 𝑦 = √3𝑥 into 𝑥2 + 𝑦2 = 4 we get 𝑥2 + 3𝑥2 = 4 
 

4𝑥2 = 4 ⇒ 𝑥 = ±1 since 
𝜋

3
 in 1st quadrant, we get 𝑥 = 1 and 𝑦 = √3 

 

 

𝑧 = 1 + √3𝑖 
 

 

Sets of points on the Complex Plane (Locus) 
 

Part of the AH course requires us to “interpret geometrically certain equations or 

inequalities in the complex plane, i.e. find the loci defined by (in) equalities”. 

We need to look at how a set of a points move in the complex plane when there are 

restrictions on its modulus and/or argument. 
 

If the restriction is on its modulus then we get a circle: 

 
|𝑧| = 𝑟 ⇒ points lie on circumference 

|𝑧| < 𝑟 ⇒ points lie inside the circle 

|𝑧| > 𝑟 ⇒ points lie outside the circle 

 

 
|𝑧 − 2| = 1 ⇒ |𝑥 + 𝑖𝑦 − 2| = 1 ⇒ |𝑥 − 2 + 𝑖𝑦| = 3  

⇒ (𝑥 − 2)2 + 𝑦2 = 1  

Circle with centre (2, 0) and radius 1 

 

 

If the restriction is on its argument then we get a straight line: 

 

arg 𝑧 =
𝜋

6
⇒ tan−1 (

𝑦

𝑥
) =

𝜋

6
  

 

⇒
𝑦

𝑥
= tan

𝜋

6
=

1

√3
⇒ 𝑦 =

1

√3
𝑥  

 

Locus is a straight line through the origin with 

gradient 
1

√3
 

 
For inequalities, shade above or below the line as appropriate. 

 

Bk2 P94 Ex3 
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𝜋
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Describe the loci in the complex plane given by |𝑧 − 1| = |𝑧 + 5|  

|𝑥 + 𝑖𝑦 − 1| = |𝑥 + 𝑖𝑦 + 5| ⇒ |(𝑥 − 1) + 𝑖𝑦| = |(𝑥 + 5) + 𝑖𝑦| 

⇒ (𝑥 − 1)2 + 𝑦2 = (𝑥 + 5)2 + 𝑦2 

⇒ 𝑥2 − 2𝑥 + 1 = 𝑥2 + 10𝑥 + 25 

⇒ −12𝑥 = 24 ⇒ 𝑥 = −2 

Vertical line  𝑥 = −2  

NB: (-2) is the middle between 1 and -5, all the points along this line are 

equidistant from (1, 0) and (-5, 0) 

 

 

DeMOIVRE’S THEOREM 

 
 

For   𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃)   then   𝑧𝑛 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃) 

 

This gives us an alternative method to find 𝑧𝑛 for complex numbers, including 

fractional indices. 

 

 Find 𝑧7 if 𝑧 = 1 + √3𝑖 
 

Convert to polar form: 𝑟 = |𝑧| = √12 + √3
2

= 2 
 

    tan 𝜃 =
√3

1
⇒ 𝜃 =

𝜋

3
 since (1, √3) in 1st quadrant 

 

Apply DeMoivre:  𝑧7 = (2)7 (cos 7(
𝜋

3
) + 𝑖 sin 7(

𝜋

3
)) 

 

    𝑧7 = 128 (cos(
7𝜋

3
) + 𝑖 sin(

7𝜋

3
) 

 
7𝜋

3
 is outwith the domain −𝜋 < 𝜃 < 𝜋  so subtract 2𝜋 repeatedly 

until 𝜃 is within the domain  
 

     𝑧7 = 128 (cos
𝜋

3
+ 𝑖 sin

𝜋

3
) = 128 (

1

2
+

√3

2
𝑖) = 64 + 64√3𝑖 
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Some Useful Points 
 

If 𝑧1 and 𝑧2 are two complex numbers expressed in polar form then: 

 |𝑧1𝑧2| = |𝑧1| × |𝑧2| 

 |
𝑧1

𝑧2
| = |𝑧1| ÷ |𝑧2| 

 𝐴𝑟𝑔(𝑧1𝑧2) = 𝐴𝑟𝑔 𝑧1 + 𝐴𝑟𝑔 𝑧2 

 𝐴𝑟𝑔 (
𝑧1

𝑧2
) =  𝐴𝑟𝑔 𝑧1 − 𝐴𝑟𝑔 𝑧2 

 

As with DeMoivre, if the new argument does not lie in the range (−𝜋, 𝜋] or 

(−180°, 180°]  then we have to add or subtract 2𝜋/360° repeatedly until it 

does. 
 

Simplify: 2 (cos
𝜋

4
+ 𝑖 sin

𝜋

4
) × 5 (cos

𝜋

6
+ 𝑖 sin

𝜋

6
) 

 

 Multiply modulus’s and add arguments     2 × 5 (cos (
𝜋

4
+

𝜋

6
) + 𝑖 sin (

𝜋

4
+

𝜋

6
)) 

 

 Simplify:  10 (cos
5𝜋

12
+ 𝑖 sin

5𝜋

12
) 

  

 

   Simplify: 9(cos 45° + 𝑖 sin 45°) ÷ 3(cos 60° + 𝑖 sin 60°) 

 

 Divide modulus’s and subtract arguments  
 
 9 ÷ 3(cos(45° − 60°) + 𝑖 sin(45° − 60°)) 

 

 Simplify:   3(cos(−15°) + 𝑖 sin(−15°)) = 3(cos(15°) − 𝑖 sin(15°)) 

 
 

 

 

 

Multiple Angle Formulae 

At Higher level, we were given the double angle formulae: 

 

At AH level, we can be asked to develop further multiple 

angle formulae by equating the DeMoivre expansion with the 

Binomial expansion of the complex number:  
 

𝑧 = cos 𝜃 + 𝑖 sin 𝜃    i.e.    𝑟 = |𝑧| = 1 

Bk2 P101 Ex6 

 Q1, 2, 3a, 3c, 4a, c, e, g, i, k 
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 (cos 𝜃 + 𝑖 sin 𝜃)2 = cos 2𝜃 + 𝑖 sin 2𝜃 using DeMoivre 
 

(cos 𝜃 + 𝑖 sin 𝜃)2 = cos2 𝜃 + 𝑖2cos 𝜃 sin 𝜃 − sin2 𝜃 using Binomial  

 

Equating real parts we get:  cos 2𝜃 = cos2 𝜃 − sin2 𝜃  

Equating imaginary pars we get:  sin 2𝜃 = 2 sin 𝜃 cos 𝜃 

 

 

 (cos 𝜃 + 𝑖 sin 𝜃)5 = cos 5𝜃 + 𝑖 sin 5𝜃 using DeMoivre 

 
(cos 𝜃 + 𝑖 sin 𝜃)5 = cos5 𝜃 + 𝑖5 cos4 𝜃 sin 𝜃 − 10 cos3 𝜃 sin2 𝜃 − 𝑖10 cos2 𝜃 sin3 𝜃 +5cos 𝜃 sin4 𝜃 + 𝑖 sin5 𝜃   

 

using Binomial  

 

Equating real parts we get: cos 5𝜃 = cos5 𝜃 − 10 cos3 𝜃 sin2 𝜃 +5cos 𝜃 sin4 𝜃  

Equating imaginary pars we get:  sin 5𝜃 = 5 cos4 𝜃 sin 𝜃 − 10 cos2 𝜃 sin3 𝜃 + sin5 𝜃 

 

This can be developed further using:   sin2 𝜃 + cos2 𝜃 = 1 
 

If we substitute cos2 𝜃 = 1 − sin2 𝜃 into the imaginary part above, we get: 
 

sin 5𝜃 = 5(1 − sin2 𝜃)2 sin 𝜃 − 10(1 − sin2 𝜃) sin3 𝜃 + sin5 𝜃 

sin 5𝜃 = 5(1 − 2 sin2 𝜃 + sin4 𝜃) sin 𝜃 − 10 sin3 𝜃 + 10 sin5 𝜃 + sin5 𝜃 

sin 5𝜃 = 5 sin 𝜃 − 10 sin3 𝜃 + 5 sin5 𝜃 − 10 sin3 𝜃 + 11 sin5 𝜃 

sin 5𝜃 = 16 sin5 𝜃 − 20 sin3 𝜃 + 5 sin 𝜃 

 

These can be re-arranged to make 

sin𝑛 𝜃 / cos𝑛 𝜃 the subject 

 

Roots of a Complex Number 
 

 

DeMoivre can also be used to find fractional powers of 𝑧 in polar form: 
 
 

 𝑧
1

𝑛 = 𝑟
1

𝑛 (cos
1

𝑛
𝜃 + 𝑖 sin

1

𝑛
𝜃)   or   √𝑧

𝑛
= √𝑟

𝑛
(cos

𝜃

𝑛
+ 𝑖 sin

𝜃

𝑛
) 

 

NB the 𝑛𝑡ℎ root of 𝑧 has 𝑛 solutions and will have arguments in the range 
(−𝑛𝜋, 𝑛𝜋] 

Bk2 P102 Ex6 

Q5, 6, 7(a) 
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Solve the equation 𝑧3 = 4 + 𝑖4√3 i.e. find √(4 + 𝑖4√3)
3

 
 

|𝑧3| = √42 + (4√3)
2

= 8  𝑎𝑟𝑔(𝑧3) = tan−1 4√3

4
=

𝜋

3
  

 

𝑧8 = 8 (cos
𝜋

3
+ 𝑖 sin

𝜋

3
)  

 

Solutions are of the form: 
 

 𝑧 = 𝑟
1

3 (cos
1

3
(

𝜋

3
+ 2𝑘𝜋) + 𝑖 sin

1

3
(

𝜋

3
+ 2𝑘𝜋)) where 𝑘 = 0,1,2 

 

𝑘 = 0 gives 𝑧 = 2 (cos
𝜋

9
+ 𝑖 sin

𝜋

9
) 

 

𝑘 = 1 gives 𝑧 = 2 (cos
7𝜋

9
+ 𝑖 sin

7𝜋

9
) 

 

𝑘 = 2 gives 𝑧 = 2 (cos
13𝜋

9
+ 𝑖 sin

13𝜋

9
) 

 

Outwith (−𝑛𝜋, 𝑛𝜋] so subtract 2𝜋 

 

𝑧 = 2 (cos −
5𝜋

9
+ 𝑖 sin −

5𝜋

9
) = 2 (cos

5𝜋

9
− 𝑖 sin

5𝜋

9
) 

 

We can be asked to plot the solutions on an Argand diagram  


Solve the equation: 𝑧5 = 1 

|𝑧5| = 1   𝑎𝑟𝑔(𝑧0) = 0    𝑧5 = 1(cos 0 + 𝑖 sin 0)  
 

Solutions are of the form: 
 

 𝑧 = 1
1

5 (cos
1

5
(0 + 2𝑘𝜋) + 𝑖 sin

1

5
(0 + 2𝑘𝜋)) where 𝑘 = 0,1,2,3,4 

 

𝑘 = 0 gives 𝑧 = (cos 0 + 𝑖 sin 0) = 1 

 

𝑘 = 1 gives 𝑧 = (cos
2𝜋

5
+ 𝑖 sin

2𝜋

5
) 

 

𝑘 = 2 gives 𝑧 = (cos
4𝜋

5
+ 𝑖 sin

4𝜋

5
) 

 

𝑘 = 3 gives 𝑧 = (cos
6𝜋

5
+ 𝑖 sin

6𝜋

5
) = cos

4𝜋

5
− 𝑖 sin

4𝜋

5
 

 

𝑘 = 4 gives 𝑧 = (cos
8𝜋

5
+ 𝑖 sin

8𝜋

5
) = cos

2𝜋

5
− 𝑖 sin

2𝜋

5
 

 

These solutions are often referred to as the 5th roots of unity 

 

Bk2 P106 

Ex7 

 Q1 
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 2a, 

2c 
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Finding Complex Roots of Polynomial Equations 
A polynomial of degree 𝑛 has 𝑛 complex roots. 

 

If 𝑓(𝑧) = 𝑧4 − 6𝑧3 + 18𝑧2 − 30𝑧 + 25, show that 𝑧 = 1 + 2𝑖 is a root of 

the equation  𝑓(𝑧) = 0 and hence find the other roots of the polynomial. 

  
𝑓(1 + 2𝑖) = (1 + 2𝑖)4 − 6(1 + 2𝑖)3 + 18(1 + 2𝑖)2 − 30(1 + 2𝑖) + 25 

 

Using the graphics calculator:   

 
𝑓(1 + 2𝑖) = (−7 − 24𝑖) − 6(−11 − 2𝑖) + 18(−3 + 4𝑖) − 30(1 + 2𝑖) + 25 

 
𝑓(1 + 2𝑖) = −7 − 24𝑖 + 66 + 12𝑖 − 54 + 72𝑖 − 30 − 60𝑖 + 25 = 0 

 

So 𝑧 = 1 + 2𝑖 is a root of 𝑓(𝑧) since 𝑓(1 + 2𝑖) = 0 

 

If 1 + 2𝑖 is a root then its conjugate 1 − 2𝑖 is also a root. 

 

This means that 𝑧 − 1 + 2𝑖 and 𝑧 − 1 − 2𝑖 are factors. 

 
(𝑧 − 1 − 2𝑖)(𝑧 − 1 + 2𝑖 ) = 𝑧2 − 𝑧 + 2𝑖𝑧 − 1 + 1 − 2𝑖 − 2𝑖𝑧 + 2𝑖 − 4𝑖2

= 𝑧2 − 2𝑧 + 5 

𝑧2 − 2𝑧 + 5 is the first quadratic factor. To find the other quadratic factor 

we use polynomial division: 

     𝑧2 −4𝑧 +5 

𝑧2 −2𝑧 +5 𝑧4 −6𝑧3 +18𝑧2 −30𝑧 +25 

   𝑧4 −2𝑧3 +5𝑧2   

    −4𝑧3 +13𝑧2 −30𝑧 +25 

    −4𝑧3 +8𝑧2 −20𝑧  

     5𝑧2 −10𝑧 +25 

     5𝑧2 −10𝑧 +25 

       0 
 

To find roots from the 2nd quadratic factor, 𝑧2 − 4𝑧 + 5, equate to 

zero and use the quadratic formula: 
 

𝑧 =
4 ± √−4

2
=

4 ± 2𝑖

2
= 2 ± 𝑖 

 

Roots are:  1 + 2𝑖, 1 − 2𝑖, 2 + 𝑖, and 2 − 𝑖 

 

 

NB:  * There is the possibility that some of the roots are REAL!! 

 * You could be asked to plot these roots on an Argand diagram. 

Bk2 P108 Ex8 
 

 Q2e, 3e, 6c, 7c 


