Differentiation 1 – New rules and Functions

In Higher Maths we learned how to differentiate functions involving a bracket without having to break it. This was called the 'Chain Rule' where we multiplied the derivative of outside the bracket by the derivative of inside the bracket.

Product Rule:

The product rule is used to differentiate a product of functions (without having to break the brackets) e.g. $y = (2x + 3)(x^2 - 2x)^4$.

Let f(x) = uv where u and v are separate functions of x

Then: f'(x) = u'v + uv'

1 Differentiate
$$f(x) = 5x(3x^2 + 2)^5$$
Let $u = 5x$ and $v = (3x^2 + 2)^5$
 $u' = 5$ and $v' = 5(3x^2 + 2)^4 \times 6x = 30x(3x^2 + 2)^4$
 $f'(x) = u'v + uv'$
 $f'(x) = 5 \times (3x^2 + 2)^5 + 5x \times 30x(3x^2 + 2)^4$
 $f'(x) = 5(3x^2 + 2)^5 + 150x^2(3x^2 + 2)^4$
 $f'(x) = 5(3x^2 + 2)^4[(3x^2 + 2) + 30x^2]$
1 NB always factorise your answer
 $f'(x) = 5(3x^2 + 2)^4[(3x^2 + 2) + 30x^2]$
1 Differentiate $f(x) = 3x^3 \cos 2x$
Let $u = 3x^3$ and $v = \cos(2x)$
 $u' = 9x^2$ and $v' = -\sin(2x) \times 2 = -2\sin 2x$
 $f'(x) = 9x^2 \times \cos 2x + 3x^3 \times -2\sin 2x$
 $f'(x) = 9x^2 \cos 2x - 6x^3 \sin 2x$
 $f'(x) = 3x^2[3\cos 2x - 2x\sin 2x]$
1 P35 Ex4A
 1^{st} Column
P36 Ex4B
 1^{st} column

<u>NB: For 3 functions -</u> f(x) = uvw then: f'(x) = u'vw + uv'w + uvw'

6 Find the equation of the tangent to the curve $y = x^2(x-1)^5$ at the point (2, 4)

Let
$$u = x^2$$
 and $v = (x - 1)^5$
 $u' = 2x$ and $v' = 5(x - 1)^4 \times 1 = 5(x - 1)^4$

$$\frac{dy}{dx} = u'v + uv'$$

$$\frac{dy}{dx} = 2x \times (x-1)^5 + x^2 \times 5(x-1)^4 = x(x-1)^4 [2(x-1) + 5x]$$
at x = 2
$$m = x(x-1)^4 (7x-2) = 2(2-1)^4 (7(2)-2) = 24$$

$$y - 4 = 24(x-2)$$

$$y = 24x - 44$$

Quotient Rule:

The quotient rule is used to differentiate an algebraic fraction e.g. $y = \frac{3x+4}{x^2-2}$

Let $f(x) = \frac{u}{v}$ where u and v are separate functions of x

$$f'(x) = \frac{u'v - uv'}{v^2}$$

2*x*

Then:

Differentiate
$$f(x) = \frac{2x}{x+3}$$
Let $u = 2x$ and $v = x + 3$
 $u' = 2$ and $v' = 1$
 $f'(x) = \frac{u'v - uv'}{v^2} = \frac{2(x+3) - 2x}{(x+3)^2} = \frac{6}{(x+3)^2}$
3 Differentiate $f(x) = \frac{4x+3}{\sqrt{2x-1}}$
Let $u = 4x + 3$ and $v = (2x - 1)^{\frac{1}{2}}$
 $u' = 4$ and $v' = \frac{1}{2}(2x - 1)^{-\frac{1}{2}} \times 2 = (2x - 1)^{-\frac{1}{2}}$
 $f'(x) = \frac{u'v - uv'}{v^2} = \frac{4(2x - 1)^{\frac{1}{2}} - (4x + 3)(2x - 1)^{-\frac{1}{2}}}{(2x - 1)}$
 $= \frac{(2x - 1)^{-\frac{1}{2}}[4(2x - 1)^1 - (4x + 3)]}{(2x - 1)}$
 $= \frac{(2x - 1)^{-\frac{1}{2}}[8x - 4 - 4x - 3]}{(2x - 1)^1}$
 $= \frac{4x - 7}{(2x - 1)^{\frac{3}{2}}}$
7 Ex5A
Columns 1&2
P37 Ex5B P37 Ex5B P38 Ex6
Mixed Exer

cise

Ρ3

Three new functions are defined in the AH course:

Secant Cosecant Cotangent $\sec x = \frac{hypotenuse}{adjacent} = \frac{1}{\cos x}$ $\csc x = \frac{hypotenuse}{opposite} = \frac{1}{\sin x}$ $\cot x = \frac{adjacent}{opposite} = \frac{1}{\tan x}$

These give us some new trigonometric identities to learn:

$$\cot x = \frac{\cos x}{\sin x} \qquad 1 + \tan^2 x = \sec^2 x \qquad 1 + \cot^2 x = \csc^2 x$$

These can be proved using the substitutions $\tan x = \frac{\sin x}{\cos x}$ &/or $\sin^2 x + \cos^2 x = 1$ if you are brave enough?

Similar to Higher, the derivatives of these new functions, along with those of $\tan x$, $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$, $\ln x$ and e^x , are given in the AH formula sheet:

Higher

Standard derivatives	
f(x)	f'(x)
sin ax	a cos ax
cos ax	$-a\sin ax$

Advanced Higher

Standard derivatives	
f(x)	f'(x)
tan x	$\sec^2 x$
cot x	$-\cos^2 x$
sec x	sec x tan x
cosec x	$-\csc x \cot x$
ln x	$\frac{1}{x}$
e ^x	e ^x
$\sin^{-1}x$	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1}x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$\frac{1}{1+x^2}$

We can be asked to find the derivative of functions involving these as well as a combination of them i.e. using the chain, product or quotient rules:

9 Differentiate $f(x) = \sin(\tan x)$ $f'(x) = -\cos(\tan x) \times \sec^2 x = -\sec^2 x \cos(\tan x)$ **D O** Differentiate $f(x) = e^{2x}(\cot x)$

Let
$$u = e^{2x}$$
 and $v = \cot x$
 $u' = 2e^{2x}$ and $v' = -\csc^2 x$
 $f'(x) = u'v + uv'$
 $f'(x) = 2e^{2x} \times \cot x + e^{2x} \times (-\csc^2 x)$
 $f'(x) = 2e^{2x}(\cot x) - e^{2x}(\csc^2 x)$
 $f'(x) = e^{2x}[2\cot x - \csc^2 x]$

00

Show that the derivative of
$$y = \frac{\ln(x^2)}{\tan x}$$
 is $\frac{2}{x \tan x} - \frac{\ln(x^2)}{\tan^2 x} - \ln(x^2)$

Let
$$u = \ln(x^2)$$
 and $v = \tan x$
 $u' = \frac{1}{x^2} \times 2x = \frac{2}{x}$ and $v' = \sec^2 x$

$$f'(x) = \frac{u'v - uv'}{v^2} = \frac{\frac{2}{x} \times \tan x - \ln(x^2) \times \sec^2 x}{\tan^2 x}$$

$$f'(x) = \frac{2}{x \tan x} - \frac{\sec^2 x \ln(x^2)}{\tan^2 x}$$

$$using \ 1 + tan^{2}x = sec^{2}x \ln(x^{2}) + tan^{2}x = sec^{2}x$$

$$f'(x) = \frac{2}{x \tan x} - \frac{(1 + \tan^2 x) \ln(x^2)}{\tan^2 x} = \frac{2}{x \tan x} - \frac{\ln(x^2)}{\tan^2 x} - \frac{\ln(x^2) \tan^2 x}{\tan^2 x}$$

$$f'(x) = \frac{2}{x \tan x} - \frac{\ln(x^2)}{\tan^2 x} - \ln(x^2)$$

f

Rectilinear Motion:

Body moving in a straight line, normally assumed to be the x-axis.

Displacement from the origin is a function of time and is denoted:

$$x = f(t)$$
 or $s = f(t)$

Velocity is the rate of displacement with time and is given by: $v = \frac{dx}{dt}$

Acceleration is the rate of change of velocity with time and is given by:

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

- **1** A body travels along a straight line such that $x = t^3 6t^2 + 9t + 1$ where x represents its displacement in centimetres from the origin t seconds after observation begins.
 - a) When is the velocity zero?
 - b) When is the acceleration zero?
 - c) When is the velocity of the body decreasing?

a)
$$v = 0 \Rightarrow \frac{dx}{dt} = 0$$
 so $3t^2 - 12t + 9 = 0 \Rightarrow 3(t - 3)(t - 1) = 0$

At the 1^{st} and 3^{rd} second, the velocity is zero.

b)
$$a = 0 \Rightarrow \frac{dv}{dt} = 0$$
 so $6t - 12 = 0 \Rightarrow t = 2$
At the 2^{nd} second, the acceleration is zero.

c) v decreasing so
$$a < 0 \Rightarrow 6t - 12 < 0 \Rightarrow t < 2$$

The velocity is decreasing up to the 2^{nd} second.

P51 Ex1 1st Column Q1&2 <u>Q</u>3, 5, 7, 11 (optional)