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Read Carefully 
 
1. Calculators may be used in this paper. 
2. Candidates should answer all questions 
3. Full credit will only be given where the solution contains appropriate working 
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1. (a) Given xexf x 4tan)( 2 ,  
8

0


 x    obtain )(' xf      3

        

 (b) For 
1

5ln




x

x
y  , where 



x 1, determine 
dx

dy
  in its simplest form    3 

 

 

2. For what value of t does the system of equations: 

 

 x  +   2y – 3z  = -7 

    4x  –   y  +  2z  = 9 

3x  – 2y  +  tz  = 13  have no solution?    5 

 

 

3. Use the binomial theorem to expand and simplify .
3

4

3










a
a   

Hence write down the term independent of a.       4 

 

 

4. Given  tan3sec2 y , find 
2

2

dx

yd
        5 

 

 

5. Use the substitution 2)1(  ux  to find 
 


dx
x

3

1

1
      5 

 

 

6. Find the equation of the locus of 54 z  where iyxz  , x and y are real   4 

 

 

 

7. For all natural numbers n, prove whether the following statement is true or false: 

 

   “ 53  nn  is always prime”        2 

 

 

 

8. A curve is defined by the parametric equations 

 

 tx 10 ,  3121 tty   for all t. 

 

(a) Find the coordinates of the stationary points of this curve.     4 

(b) Obtain an expression for 
2

2

dx

yd
 and use this to determine the nature of the stationary 

points found in (a). 

3 

All questions should be attempted 
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9. (a) express the function 
xx

xxx
xf






3

34 456
)(  in the form: 

   
11 





x

E

x

D

x

C
BAx  where A, B, C, D and E are integers   4 

 

(b) Hence show that 6ln16)(
3  

2  
 dxxf .       4 

 

 

10.  Given that  sincos iw  , show that  sincos
1

i
w

       1 

 Use DeMoivre’s theorem to prove that kww kk cos2   where k is a natural number.  4  

 

 

 

11. Use integration by parts to evaluate 


1  

0  

2 dxex x        5 

 

 

12. Let ,........,, 21 nuuu  be an arithmetic sequence and ,........,, 21 nvvv  be a geometric sequence. 

 The first terms 1u  and 1v  are both equal to 45 and the third terms 3u  and 3v  are both equal to 5. 

 

(a) Find 11u            3 

 

(b) Given that ,........,, 21 nvvv  is a sequence of positive numbers, calculate 


1n

nv   3 

 

 

13. Given that 12 
dx

dy
ex y  and 0y  when 1x , find y in terms of x     4 

 

 

14. The function f is defined by 
4

25
)(

2

2






x

x
xf  

 

 (a) Decide, giving reasons, whether f is odd, even or neither.     2 

 

(b) Write down the equation of any vertical asymptote.      2 

 

(c) Find algebraically the equation of any non vertical asymptote.    3 

 

(d) Find the coordinate of the only stationary point of the function f.      3 

 

 

  

 

 

 

 

  

[ END OF QUESTION PAPER ] 


