ABRONHILL HIGH SCHOOL

Prelim Examination 2010 / 2011
 (Assessing Units 1 \& 2)

MATHEMATICS

Advanced Higher Grade

Time allowed - 2 hours

Read Carefully

1. Calculators may be used in this paper.
2. Candidates should answer all questions
3. Full credit will only be given where the solution contains appropriate working

All questions should be attempted

1. (a) Given $f(x)=e^{-2 x} \tan 4 x, 0<x<\frac{\pi}{8}$ obtain $f^{\prime}(x)$
(b) For $y=\frac{\ln 5 x}{x-1}$, where $x>1$, determine $\frac{d y}{d x}$ in its simplest form
2. For what value of t does the system of equations:

$$
\begin{aligned}
& x+2 y-3 z=-7 \\
& 4 x-y+2 z=9 \quad \text { have no solution? } \\
& 3 x-2 y+t z=13 \quad
\end{aligned}
$$

3. Use the binomial theorem to expand and simplify $\left(a^{3}-\frac{3}{a}\right)^{4}$.

Hence write down the term independent of a.
4. Given $y=2 \sec \theta+3 \tan \theta$, find $\frac{d^{2} y}{d x^{2}}$
5. Use the substitution $x=(u-1)^{2}$ to find $\int \frac{1}{(1+\sqrt{x})^{3}} d x$
6. Find the equation of the locus of $|z-4|=5$ where $z=x+i y$, x and y are real
7. For all natural numbers n, prove whether the following statement is true or false:

$$
\begin{equation*}
" n^{3}+n+5 \text { is always prime" } \tag{2}
\end{equation*}
$$

8. A curve is defined by the parametric equations

$$
x=10 t, \quad y=1+12 t-t^{3} \quad \text { for all } t
$$

(a) Find the coordinates of the stationary points of this curve.
(b) Obtain an expression for $\frac{d^{2} y}{d x^{2}}$ and use this to determine the nature of the stationary points found in (a).
9. (a) express the function $f(x)=\frac{6 x^{4}+x^{3}-5 x-4}{x^{3}-x}$ in the form:

$$
A x+B+\frac{C}{x}+\frac{D}{x+1}+\frac{E}{x-1} \text { where A, B, C, D and E are integers }
$$

(b) Hence show that $\int_{2}^{3} f(x) d x=16+\ln 6$.
10. Given that $w=\cos \theta+i \sin \theta$, show that $\frac{1}{w}=\cos \theta-i \sin \theta$

Use DeMoivre's theorem to prove that $w^{k}+w^{-k}=2 \cos k \theta$ where k is a natural number.
11. Use integration by parts to evaluate $\int_{0}^{1} x^{2} e^{-x} d x$
12. Let $u_{1}, u_{2} \ldots ., u_{n}, \ldots$ be an arithmetic sequence and $v_{1}, v_{2} \ldots ., v_{n}, \ldots$ be a geometric sequence.

The first terms u_{1} and v_{1} are both equal to 45 and the third terms u_{3} and v_{3} are both equal to 5 .
(a) Find u_{11}
(b) Given that $v_{1}, v_{2} \ldots ., v_{n}, \ldots$ is a sequence of positive numbers, calculate $\sum_{n=1}^{\infty} v_{n}$
13. Given that $x^{2} e^{y} \frac{d y}{d x}=1$ and $y=0$ when $x=1$, find y in terms of x
14. The function f is defined by $f(x)=\frac{x^{2}-25}{x^{2}-4}$
(a) Decide, giving reasons, whether f is odd, even or neither.
(b) Write down the equation of any vertical asymptote.
(c) Find algebraically the equation of any non vertical asymptote.
(d) Find the coordinate of the only stationary point of the function f.

