ABRONHILL HIGH SCHOOL

Prelim Examination 2010 / 2011 (Assessing Units 1 & 2)

MATHEMATICS

Advanced Higher Grade

Time allowed - 2 hours

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer all questions
- 3. Full credit will only be given where the solution contains appropriate working

All questions should be attempted

- 1. (a) Given $f(x) = e^{-2x} \tan 4x$, $0 < x < \frac{\pi}{8}$ obtain f'(x)
 - (b) For $y = \frac{\ln 5x}{x-1}$, where x > 1, determine $\frac{dy}{dx}$ in its simplest form
- **2.** For what value of *t* does the system of equations:

$$x + 2y - 3z = -7$$

 $4x - y + 2z = 9$
 $3x - 2y + tz = 13$ have no solution?

- 3. Use the binomial theorem to expand and simplify $\left(a^3 \frac{3}{a}\right)^4$. Hence write down the term independent of a.
- 4. Given $y = 2\sec\theta + 3\tan\theta$, find $\frac{d^2y}{dx^2}$
- 5. Use the substitution $x = (u-1)^2$ to find $\int \frac{1}{\left(1 + \sqrt{x}\right)^3} dx$
- **6.** Find the equation of the locus of |z-4|=5 where z=x+iy, x and y are real
- 7. For all natural numbers n, prove whether the following statement is true or false:

"
$$n^3 + n + 5$$
 is always prime"

8. A curve is defined by the parametric equations

$$x = 10t$$
, $y = 1 + 12t - t^3$ for all t .

- (a) Find the coordinates of the stationary points of this curve.
- (b) Obtain an expression for $\frac{d^2y}{dx^2}$ and use this to determine the nature of the stationary points found in (a).

4

9. (a) express the function $f(x) = \frac{6x^4 + x^3 - 5x - 4}{x^3 - x}$ in the form:

$$Ax + B + \frac{C}{x} + \frac{D}{x+1} + \frac{E}{x-1}$$
 where A, B, C, D and E are integers

- (b) Hence show that $\int_{2}^{3} f(x) dx = 16 + \ln 6$.
- 10. Given that $w = \cos \theta + i \sin \theta$, show that $\frac{1}{w} = \cos \theta i \sin \theta$

Use DeMoivre's theorem to prove that $w^k + w^{-k} = 2\cos k\theta$ where k is a natural number.

- 11. Use integration by parts to evaluate $\int_0^1 x^2 e^{-x} dx$ 5
- 12. Let $u_1, u_2, \dots, u_n, \dots$ be an arithmetic sequence and $v_1, v_2, \dots, v_n, \dots$ be a geometric sequence. The first terms u_1 and v_1 are both equal to 45 and the third terms u_3 and v_3 are both equal to 5.
 - (a) Find u_{11}
 - (b) Given that v_1, v_2, \dots, v_n is a sequence of positive numbers, calculate $\sum_{n=1}^{\infty} v_n$
- 13. Given that $x^2 e^y \frac{dy}{dx} = 1$ and y = 0 when x = 1, find y in terms of x
- 14. The function f is defined by $f(x) = \frac{x^2 25}{x^2 4}$
 - (a) Decide, giving reasons, whether f is odd, even or neither.
 - (b) Write down the equation of any vertical asymptote.
 - (c) Find algebraically the equation of any non vertical asymptote. 3
 - (d) Find the coordinate of the only stationary point of the function f.

[END OF QUESTION PAPER]