Mini-Prelim Examination 2008 / 2009 (Assessing Unit 3 + Units 1 & 2 Revision)

MATHEMATICS

Advanced Higher Grade

Time allowed - 1 hour 20 minutes

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer all questions
- 3. Full credit will only be given where the solution contains appropriate working

1.
$$P = \begin{pmatrix} 6 & -3 \\ 2 & -5 \end{pmatrix}, Q = \begin{pmatrix} 1 & -1 \\ 2 & -3 \end{pmatrix} \text{ and } R = P - 2Q.$$

Find R^{-1} , the inverse of R.

2. Obtain algebraically the fixed point of the iterative scheme given by

$$x_{n+1} = \frac{1}{5} \left\{ 4x_n - \frac{27}{x_n^2} \right\}, \qquad n = 0, 1, 2, \dots$$
 3

(c) A second plane
$$\alpha$$
 is parallel to the plane π and the line *l* meets the plane α at the point $P(5, 0, 5)$

at the point
$$R(-5, -9, 5)$$
.

Find the equation of the plane α .

4. (a) Show that
$$e^{\int \frac{\sin x}{\cos x} dx} = \sec x$$
.

(b) (i) Find the general solution of the first order linear differential equation

$$\cos x \frac{dy}{dx} + (\sin x)y = 2\cos^3 x \sin x - 1, \quad 0 \le x < \frac{\pi}{2}.$$
 6

(ii) Find the particular solution corresponding to the condition
$$y\left(\frac{\pi}{4}\right) = 3\sqrt{2}$$
. 2

5. Prove by induction that
$$\sum_{r=1}^{n} \frac{3}{(3r-1)(3r+2)} = \frac{1}{2} - \frac{1}{3n+2}$$
 for all positive integers *n*. 5

State the value of the limit as
$$n \to \infty$$
 of $\sum_{r=1}^{n} \frac{3}{(3r-1)(3r+2)}$.

© Pegasys 2008

3

3

2

6. Express the integer 271 in base 6.

7. Find the Maclaurin expansion of $\ln(1+x)$ as far as the term in x^4 .

Given that the Maclaurin expansion of $\ln(\cos x)$ as far as the term in x^4 is $-\frac{x^2}{2} - \frac{x^4}{12}$, find the Maclaurin expansion as far as the term in x^4 of $\ln(\cos x + x \cos x)$.

8. (a) Given
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & 2 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & 1 & -2 \\ -1 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}$, find AB. 1

(*b*) **Hence** solve the system of equations

$$4x + y - 2z = 1-x + z = -22x + y - z = 5.$$
3

9. Find the general solution of the differential equation

$$4\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} + y = 3x + 4.$$

Find the particular solution corresponding to the initial conditions $\frac{dy}{dx} = -3$

and
$$\frac{d^2 y}{dx^2} = 4$$
 when $x = 0$. 10

[END OF QUESTION PAPER]

3

3