Mini-Prelim Examination 2008 / 2009 (Assessing Unit 3 + Units 1 \& 2 Revision)

MATHEMATICS

Advanced Higher Grade

Time allowed - 1 hour 20 minutes

Read Carefully

1. Calculators may be used in this paper.
2. Candidates should answer all questions
3. Full credit will only be given where the solution contains appropriate working
4. $P=\left(\begin{array}{ll}6 & -3 \\ 2 & -5\end{array}\right), Q=\left(\begin{array}{ll}1 & -1 \\ 2 & -3\end{array}\right)$ and $R=P-2 Q$.

Find R^{-1}, the inverse of R.
2. Obtain algebraically the fixed point of the iterative scheme given by

$$
\begin{equation*}
x_{n+1}=\frac{1}{5}\left\{4 x_{n}-\frac{27}{x_{n}^{2}}\right\}, \quad n=0,1,2, \ldots \tag{3}
\end{equation*}
$$

3. (a) The line l has equation $\frac{x-1}{3}=\frac{y+1}{4}=\frac{z-1}{-2}$. This line meets the plane π with equation $2 x-y-4 z=9$ at the point T.

Find the coordinates of T.
(b) Find the size of the angle between the line l and the plane π.
(c) A second plane α is parallel to the plane π and the line l meets the plane α at the point $R(-5,-9,5)$.

Find the equation of the plane α.
4. (a) Show that $e^{\frac{\sin x}{\cos x} d x}=\sec x$.
(b) (i) Find the general solution of the first order linear differential equation

$$
\begin{equation*}
\cos x \frac{d y}{d x}+(\sin x) y=2 \cos ^{3} x \sin x-1, \quad 0 \leq x<\frac{\pi}{2} \tag{6}
\end{equation*}
$$

(ii) Find the particular solution corresponding to the condition $y\left(\frac{\pi}{4}\right)=3 \sqrt{2}$.
5. Prove by induction that $\sum_{r=1}^{n} \frac{3}{(3 r-1)(3 r+2)}=\frac{1}{2}-\frac{1}{3 n+2}$ for all positive integers n.

State the value of the limit as $n \rightarrow \infty$ of $\sum_{r=1}^{n} \frac{3}{(3 r-1)(3 r+2)}$.
6. Express the integer 271 in base 6 .
7. Find the Maclaurin expansion of $\ln (1+x)$ as far as the term in x^{4}.

Given that the Maclaurin expansion of $\ln (\cos x)$ as far as the term in x^{4} is $-\frac{x^{2}}{2}-\frac{x^{4}}{12}$, find the Maclaurin expansion as far as the term in x^{4} of $\ln (\cos x+x \cos x)$.
8. (a) Given $A=\left(\begin{array}{ccc}1 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & 2 & -1\end{array}\right)$ and $B=\left(\begin{array}{ccc}4 & 1 & -2 \\ -1 & 0 & 1 \\ 2 & 1 & -1\end{array}\right)$, find $A B$.
(b) Hence solve the system of equations

$$
\begin{aligned}
& 4 x+y-2 z=1 \\
& -x+z=-2 \\
& 2 x+y-z=5 .
\end{aligned}
$$

9. Find the general solution of the differential equation

$$
4 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+y=3 x+4
$$

Find the particular solution corresponding to the initial conditions $\frac{d y}{d x}=-3$ and $\frac{d^{2} y}{d x^{2}}=4$ when $x=0$.

