Prelim Examination 2008 / 2009 (Assessing Units 1 & 2)

MATHEMATICS

Advanced Higher Grade

Time allowed - 2 hours

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer all questions
- 3. Full credit will only be given where the solution contains appropriate working

1. Given $x = \sin^{-1} t$, $y = \ln t$ where 0 < t < 1, use parametric differentiation to obtain $\frac{dy}{dx}$ in terms of *t*. Simplify your answer.

2. Find the coefficient of
$$x^{-4}$$
 in the expansion of $\left(\frac{x^2}{2} - \frac{4}{x^3}\right)^8$. 5

3. Express
$$\frac{x^2 - 2x + 6}{x^2 (x^2 + 2)}$$
 in partial fractions. 5

4. Use Gaussian elimination to solve the system of equations

$$2x - 7y + 10z = -1$$

$$x - 3y + 4z = 2$$

$$5x - 18y + 26z = -6.$$
5

3

4

3

5. Express
$$z = \frac{5i}{1+2i}$$
 in the form $a + ib$ where a and b are real numbers. 2

Verify that z is a solution of the equation $z^4 - 4z^3 + 6z^2 - 4z + 5 = 0$ and find the other three roots.

6. Prove by induction that $8^n - 7n + 6$ is divisible by 7 for all natural numbers *n*. 5

7. A curve is defined by the equation
$$x^3y^2 - 2xy + 8 = 0$$
, $x < 0$ and $y < 0$.

Use implicit differentiation to find
$$\frac{dy}{dx}$$
. 3

Hence find the equation of the tangent to the curve at the point where x = -1.

8. (a) Evaluate
$$\sum_{r=1}^{3} 16 \times \left(\frac{3}{4}\right)^{r-1}$$
. 2

3

3

5

(b) Explain why the sum to infinity of the geometric series 16 + 12 + 9 + ... exists and find this sum.

9.
$$I = \int_{0}^{2} e^{\sqrt{4x+1}} dx.$$

- (a) Use the substitution $u = \sqrt{4x+1}$ to express *I* in the form $\int_{a}^{b} \frac{1}{k} u e^{u} du$, where *a*, *b* and *k* are integers.
- (b) Use integration by parts to evaluate the integral found in (a).
- 10. The function g is given by $g(x) = e^{2x} \sin 2x$.

<i>(a)</i>	Determine whether g is odd, even or neither.	2
<i>(b)</i>	Find the coordinates of the stationary point of g in the interval $0 < x < \frac{\pi}{2}$.	5
(<i>c</i>)	Obtain a formula for $y = g''(x)$.	1

(d) Use your answer to (c) to determine the nature of the stationary point found in (b). 2

11. Let $z = \cos \theta + i \sin \theta$.

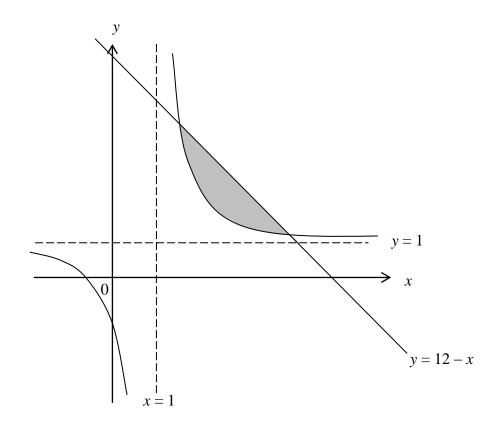
(<i>a</i>)	Use de Moivre's theorem to express z^3 in terms of 3θ .	1

- (b) Use the binomial theorem to express z^3 in terms of $\sin \theta$ and $\cos \theta$. 2
- (c) Hence express
 - (i) $\cos 3\theta$ in terms of $\cos \theta$
 - (ii) $\sin 3\theta$ in terms of $\sin \theta$. 2,2
- (d) Use your answers to (c)(i) and (c)(ii) to show that

$$\cot 3\theta = \frac{1 - 3\tan^2 \theta}{3\tan \theta - \tan^3 \theta}.$$

- 12. (a) Express $\frac{x+8}{x-1}$ in the form $A + \frac{B}{x-1}$.
 - (b) The diagram below shows the curve with equation $y = \frac{x+8}{x-1}$ and the line with equation y = 12 x.

Show that the shaded area can be written as $40 - \ln 9^9$.



[END OF QUESTION PAPER]

6