Prelim Examination 2008 / 2009
 (Assessing Units 1 \& 2)

MATHEMATICS

Advanced Higher Grade

Time allowed - 2 hours

Read Carefully

1. Calculators may be used in this paper.
2. Candidates should answer all questions
3. Full credit will only be given where the solution contains appropriate working

All questions should be attempted

1. Given $x=\sin ^{-1} t, y=\ln t$ where $0<t<1$, use parametric differentiation to obtain $\frac{d y}{d x}$ in terms of t. Simplify your answer.
2. Find the coefficient of x^{-4} in the expansion of $\left(\frac{x^{2}}{2}-\frac{4}{x^{3}}\right)^{8}$.
3. Express $\frac{x^{2}-2 x+6}{x^{2}\left(x^{2}+2\right)}$ in partial fractions.
4. Use Gaussian elimination to solve the system of equations

$$
\begin{aligned}
2 x-7 y+10 z & =-1 \\
x-3 y+4 z & =2 \\
5 x-18 y+26 z & =-6 .
\end{aligned}
$$

5. Express $z=\frac{5 i}{1+2 i}$ in the form $a+i b$ where a and b are real numbers.

Verify that z is a solution of the equation $z^{4}-4 z^{3}+6 z^{2}-4 z+5=0$ and find the other three roots.
6. Prove by induction that $8^{n}-7 n+6$ is divisible by 7 for all natural numbers n.
7. A curve is defined by the equation $x^{3} y^{2}-2 x y+8=0, x<0$ and $y<0$.

Use implicit differentiation to find $\frac{d y}{d x}$.
Hence find the equation of the tangent to the curve at the point where $x=-1$.
8. (a) Evaluate $\sum_{r=1}^{3} 16 \times\left(\frac{3}{4}\right)^{r-1}$.
(b) Explain why the sum to infinity of the geometric series $16+12+9+\ldots$ exists and find this sum.
9. $I=\int_{0}^{2} e^{\sqrt{4 x+1}} d x$.
(a) Use the substitution $u=\sqrt{4 x+1}$ to express I in the form $\int_{a}^{b} \frac{1}{k} u e^{u} d u$, where a, b and k are integers.
(b) Use integration by parts to evaluate the integral found in (a).
10. The function g is given by $g(x)=e^{2 x} \sin 2 x$.
(a) Determine whether g is odd, even or neither.
(b) Find the coordinates of the stationary point of g in the interval $0<x<\frac{\pi}{2}$.
(c) Obtain a formula for $y=g^{\prime \prime}(x)$.
(d) Use your answer to (c) to determine the nature of the stationary point found in (b).
11. Let $z=\cos \theta+i \sin \theta$.
(a) Use de Moivre's theorem to express z^{3} in terms of 3θ.
(b) Use the binomial theorem to express z^{3} in terms of $\sin \theta$ and $\cos \theta$.
(c) Hence express
(i) $\cos 3 \theta$ in terms of $\cos \theta$
(ii) $\sin 3 \theta$ in terms of $\sin \theta$.
(d) Use your answers to (c)(i) and (c)(ii) to show that

$$
\cot 3 \theta=\frac{1-3 \tan ^{2} \theta}{3 \tan \theta-\tan ^{3} \theta} .
$$

12. (a) Express $\frac{x+8}{x-1}$ in the form $A+\frac{B}{x-1}$.
(b) The diagram below shows the curve with equation $y=\frac{x+8}{x-1}$ and the line with equation $y=12-x$.

Show that the shaded area can be written as $40-\ln 9^{9}$.

[END OF QUESTION PAPER]

