ELGIN ACADEMY

Prelim Examination 2007 / 2008

MATHEMATICS Advanced Higher Grade

Time allowed - 2 hours

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer **all** questions.
- 3. Full credit will be given only where the solution contains appropriate working.
- 4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. (a) Given
$$f(x) = 6 \tan^{-1} \sqrt{x}$$
, where $x > 0$, obtain $f'(x)$ and simplify your answer. 3

(b) Given
$$y = x^{x-2}$$
, where $x > 2$, use logarithmic differentiation to obtain
 $\frac{dy}{dx}$ in terms of x. 3

2.
$$z_1 = 2i$$
 and $z_2 = 1 - i$.

(a) Express
$$\frac{z_1}{z_2}$$
 in the form $a + bi$ (where a and b are real numbers). 2

(b) Find
$$\arg\left(\frac{z_1}{z_2}\right)$$
. 1

3. Find the term independent of p in the expansion of
$$\left(3p^3 - \frac{2}{p}\right)^4$$
.

4. Prove by induction that for all natural numbers
$$n$$
, $2^{3n} - 1$ is divisible by 7. 5

5. (a) Show that the matrix
$$A = \begin{pmatrix} 2 & 1 & 4 \\ 1 & 0 & 2 \\ 2 & 3 & 1 \end{pmatrix}$$
 is non-singular. 3

(b) Use elementary row operations to find A^{-1} . 5

6. Use integration by parts to evaluate

$$\int_{0}^{1} 2 \tan^{-1} x \, dx.$$
 4

7. A curve is defined by the parametric equations

$$x = t^2 - 2t$$
, $y = 1 - t^4$.

Find the equation of the tangent to the curve at the point where t = -1.

8. Express the improper rational function $f(x) = \frac{x^3 + 3x^2 - 8x + 2}{x^2 - 2x + 1}$ in the form

$$f(x) = g(x) + h(x),$$

where g(x) is a polynomial function and h(x) is a proper rational function expressed in partial fractions.

9. By using the substitution $t = 1 + \tan x$, show that:

$$\int_{0}^{\frac{\pi}{4}} \frac{\sec^2 x}{1 + \tan x} \, dx \tag{5}$$

10. (a) Calculate the sum of all the two digit natural numbers which are divisible by 3. 4

(b) Find the value of θ , $0 < \theta < \frac{\pi}{2}$, such that:

$$1 + \sin^2 \theta + \sin^4 \theta + \sin^6 \theta + \dots = 2.$$
 5

11. A scientist constructs the differential equation

$$\frac{dy}{dx} = e^{x+y}$$

to describe the relationship between two quantities *x* and *y*.

- (*a*) Find the general solution of the differential equation. 4
- (b) Given that y = 0 when x = 1, find the particular solution, expressing y in terms of x.

4

6

2

12. The function f is defined by $f(x) = \frac{x^2 + 3}{x + 1}, x \neq -1, x \in R$.

<i>(a)</i>	(i)	Write down the equation of the vertical asymptote of <i>f</i> .	1
	(ii)	Show that f has a non-vertical asymptote and obtain its equation.	2
	(iii)	Find the point(s) of intersection with the <i>x</i> - and <i>y</i> - axes.	2
(<i>b</i>)	Find	coordinates and nature of the stationary points of <i>f</i> . 5	
(<i>c</i>)	Sketch the graph of $y = f(x)$, indicating the features found in (a) and (b).		3

[END OF QUESTION PAPER]