ELGIN ACADEMY

Prelim Examination 2007 / 2008

MATHEMATICS
 Advanced Higher Grade

Time allowed - 2 hours

Read Carefully

1. Calculators may be used in this paper.
2. Candidates should answer all questions.
3. Full credit will be given only where the solution contains appropriate working.
4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. (a) Given $f(x)=6 \tan ^{-1} \sqrt{x}$, where $x>0$, obtain $f^{\prime}(x)$ and simplify your answer. 3
(b) Given $y=x^{x-2}$, where $x>2$, use logarithmic differentiation to obtain $\frac{d y}{d x}$ in terms of x.
2. $z_{1}=2 i$ and $z_{2}=1-i$.
(a) Express $\frac{z_{1}}{z_{2}}$ in the form $a+b i$ (where a and b are real numbers).
(b) Find $\arg \left(\frac{z_{1}}{z_{2}}\right)$.
3. Find the term independent of p in the expansion of $\left(3 p^{3}-\frac{2}{p}\right)^{4}$.
4. Prove by induction that for all natural numbers $n, 2^{3 n}-1$ is divisible by 7 .
5. (a) Show that the matrix $A=\left(\begin{array}{lll}2 & 1 & 4 \\ 1 & 0 & 2 \\ 2 & 3 & 1\end{array}\right)$ is non-singular.
(b) Use elementary row operations to find A^{-1}.
6. Use integration by parts to evaluate

$$
\begin{equation*}
\int_{0}^{1} 2 \tan ^{-1} x d x \tag{4}
\end{equation*}
$$

7. A curve is defined by the parametric equations

$$
x=t^{2}-2 t, \quad y=1-t^{4} .
$$

Find the equation of the tangent to the curve at the point where $t=-1$.
8. Express the improper rational function $f(x)=\frac{x^{3}+3 x^{2}-8 x+2}{x^{2}-2 x+1}$ in the form

$$
f(x)=g(x)+h(x),
$$

where $g(x)$ is a polynomial function and $h(x)$ is a proper rational function expressed in partial fractions.
9. By using the substitution $t=1+\tan x$, show that:

$$
\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{1+\tan x} d x
$$

10. (a) Calculate the sum of all the two digit natural numbers which are divisible by 3 .
(b) Find the value of $\theta, 0<\theta<\frac{\pi}{2}$, such that:

$$
1+\sin ^{2} \theta+\sin ^{4} \theta+\sin ^{6} \theta+\ldots=2 .
$$

11. A scientist constructs the differential equation

$$
\frac{d y}{d x}=e^{x+y}
$$

to describe the relationship between two quantities x and y.
(a) Find the general solution of the differential equation.
(b) Given that $y=0$ when $x=1$, find the particular solution, expressing y in terms of x.
12. The function f is defined by $f(x)=\frac{x^{2}+3}{x+1}, x \neq-1, x \in R$.
(a) (i) Write down the equation of the vertical asymptote of f. $\mathbf{1}$
(ii) Show that f has a non-vertical asymptote and obtain its equation. $\mathbf{2}$
(iii) Find the point(s) of intersection with the x - and y-axes. $\mathbf{2}$
(b) Find the coordinates and nature of the stationary points of f. $\mathbf{5}$
(c) Sketch the graph of $y=f(x)$, indicating the features found in (a) and (b). 3

