ELGIN ACADEMY

Prelim Examination 2006 / 2007 (Assessing Units 1 \& 2)

MATHEMATICS

Advanced Higher Grade

Time allowed - 2 hours

Read Carefully

1. Calculators may be used in this paper.
2. Candidates should answer all questions.
3. Full credit will be given only where the solution contains appropriate working.
4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. (a) Given $f(x)=e^{-2 x} \tan 4 x, 0<x<\frac{\pi}{8}$, obtain $f^{\prime}(x)$.
(b) For $\mathrm{y}=\frac{\ln 5 x}{x-1}$, where $\mathrm{x}>1$, determine $\frac{d y}{d x}$ in its simplest form.
2. For what value of t does the system of equations

$$
\begin{aligned}
x+2 y-3 z & =-7 \\
4 x-y+2 z & =9 \\
3 x-2 y+t z & =13
\end{aligned}
$$

have no solution?
3. Verify that $1-3 i$ is a solution of $z^{4}-4 z^{3}+11 z^{2}-14 z-30=0$.

Hence express $z^{4}-4 z^{3}+11 z^{2}-14 z-30$ in the form $(z+a)(z+b)\left(z^{2}+c z+d\right)$, where a, b, c and d are real numbers.
4. Use the substitution $x=3 \cos \theta$ to show that

$$
\int_{\frac{3}{2}}^{3} \frac{d x}{\sqrt{9-x^{2}}}=\frac{\pi}{3}
$$

5. Obtain the binomial expansion of $\left(3 a^{2}-\frac{4}{b}\right)^{5}$.
6. Use integration by parts to evaluate $\int_{0}^{1} x^{2} e^{-x} d x$.
7. Determine whether the function $f(x)=x^{2} \cos x+x^{3}$ is odd, even or neither.

Justify your answer.
8. A spherical balloon is being inflated.

Its volume, $V \mathrm{~cm}^{3}$, is increasing at the rate of $\frac{30 \pi}{7} \mathrm{~cm}^{3}$ per second.
Find the rate at which the radius is increasing with respect to time when the volume is $\frac{36 \pi}{5} \mathrm{~cm}^{3}$.
[Note: The volume of a sphere is given by $\quad V=\frac{4}{3} \pi r^{3}$.]
9. Prove that if n is odd then $n^{4}-1$ is divisible by 8 .
10. (a) Obtain partial fractions for

$$
\begin{equation*}
\frac{9}{x^{2}-9} \tag{2}
\end{equation*}
$$

(b) Hence evaluate

$$
\begin{equation*}
\int_{0}^{1} \frac{x^{2}}{x^{2}-9} d x \tag{4}
\end{equation*}
$$

11. The function f is defined by

$$
f(x)=\frac{x^{2}}{x+3} \quad, x \neq-3 .
$$

(a) Obtain algebraically the asymptotes of the graph of f.
(b) Find the stationary points of f and justify their nature.
(c) Sketch the curve showing clearly the features found in (a) and (b).
(d) Write down the coordinates of the stationary points of the graph of $g(x)=10+|f(x)|$.
12. The first two terms of a series are $1+\sqrt{2}$ and $1+\frac{1}{\sqrt{2}}$.
(a) If the series is arithmetic, show that the common difference is $-\frac{1}{2} \sqrt{2}$.

Show also that the sum of the first ten terms is $\frac{5}{2}(4-5 \sqrt{2})$.
(b) If the series is geometric, show that the sum to infinity exists.

Show also that $S_{\infty}=4+3 \sqrt{2}$.
13. A solid is formed by rotating the curve $y=x^{2}+4$ between $x=1$ and $x=t, t>1$, through 360° about the y-axis.

Find the value of t given that the volume of the solid formed is 40π units 3.

