ELGIN ACADEMY

Prelim Examination 2006 / 2007 (Assessing Units 1 & 2)

MATHEMATICS Advanced Higher Grade

Time allowed - 2 hours

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer **all** questions.
- 3. Full credit will be given only where the solution contains appropriate working.
- 4. This examination paper contains questions graded at all levels.

1. (a) Given
$$f(x) = e^{-2x} \tan 4x$$
, $0 < x < \frac{\pi}{8}$, obtain $f'(x)$.

(b) For
$$y = \frac{\ln 5x}{x-1}$$
, where $x > 1$, determine $\frac{dy}{dx}$ in its simplest form. 3

2. For what value of *t* does the system of equations

$$x + 2y - 3z = -7$$

$$4x - y + 2z = 9$$

$$3x - 2y + tz = 13$$

have no solution?

3. Verify that
$$1 - 3i$$
 is a solution of $z^4 - 4z^3 + 11z^2 - 14z - 30 = 0$.
Hence express $z^4 - 4z^3 + 11z^2 - 14z - 30$ in the form $(z + a)(z + b)(z^2 + cz + d)$, where *a*, *b*, *c* and *d* are real numbers. 5

4. Use the substitution $x = 3\cos\theta$ to show that

$$\int_{\frac{3}{2}}^{3} \frac{dx}{\sqrt{9-x^2}} = \frac{\pi}{3}$$
 6

5. Obtain the binomial expansion of
$$\left(3a^2 - \frac{4}{b}\right)^5$$
. 3

6. Use integration by parts to evaluate
$$\int_{0}^{1} x^2 e^{-x} dx$$
. 5

7. Determine whether the function $f(x) = x^2 \cos x + x^3$ is odd, even or neither. Justify your answer. 5

8. A spherical balloon is being inflated. Its volume, $V \text{ cm}^3$, is increasing at the rate of $\frac{30\pi}{7}$ cm³ per second.

Find the rate at which the radius is increasing with respect to time when the volume is $\frac{36\pi}{5}$ cm³.

[Note: The volume of a sphere is given by
$$V = \frac{4}{3} \pi r^3$$
.] 5

9. Prove that if *n* is odd then
$$n^4 - 1$$
 is divisible by 8.

$$\frac{9}{x^2-9}$$

3

(*b*) Hence evaluate

$$\int_{0}^{1} \frac{x^{2}}{x^{2} - 9} \, dx \, . \tag{4}$$

11. The function f is defined by

$$f(x)=\frac{x^2}{x+3}, x\neq -3.$$

<i>(a)</i>	Obtain algebraically the asymptotes of the graph of <i>f</i> .	3
(<i>b</i>)	Find the stationary points of f and justify their nature.	5
(c)	Sketch the curve showing clearly the features found in (a) and (b) .	2
(<i>d</i>)	Write down the coordinates of the stationary points of the graph of $g(x) = 10 + f(x) $.	2

12. The first two terms of a series are $1 + \sqrt{2}$ and $1 + \frac{1}{\sqrt{2}}$.

(a) If the series is arithmetic, show that the common difference is $-\frac{1}{2}\sqrt{2}$. Show also that the sum of the first ten terms is $\frac{5}{2}(4-5\sqrt{2})$.

(b) If the series is geometric, show that the sum to infinity exists.

Show also that
$$S_{\infty} = 4 + 3\sqrt{2}$$
. 5

4

6

13. A solid is formed by rotating the curve $y = x^2 + 4$ between x = 1 and x = t, t > 1, through 360^0 about the y – axis.

Find the value of t given that the volume of the solid formed is 40π units³.

[END OF QUESTION PAPER]