Prelim Examination 2002 / 2003 (Assessing Unit 3)

MATHEMATICS
 Advanced Higher Grade

Time allowed - 1 hour

Read Carefully

1. Full credit will be given only where the solution contains appropriate working.
2. Calculators may be used in this paper.
3. Answers obtained by readings from scale drawings will not receive any credit.
4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. (a) Evaluate the product of the quadratic form

$$
\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
1 & 6 \tag{2}\\
-3 & 2
\end{array}\right)\binom{x}{y}
$$

(b) Find the general result of the quadratic form

$$
\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
a & b \tag{2}\\
c & d
\end{array}\right)\binom{x}{y}
$$

(c) Find the matrix $\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)$ given that

$$
\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
p & q \tag{4}\\
r & s
\end{array}\right)\binom{x}{y}=3 x^{2}-3 x y+4 y^{2} \text { and }\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)^{2}=\left(\begin{array}{cc}
-1 & 14 \\
-35 & 6
\end{array}\right) .
$$

2. Prove by induction that $2^{3 n-1}+3$ is divisible by 7 for all positive integers n.
3. (a) Find the first five non-zero terms of the Maclaurin series for $\ln (1+x)$.
(b) Deduce the Maclaurin series for $\ln (1-2 x)$.
(c) Hence find the first five terms of the Maclaurin series for $\ln \left(1-x-2 x^{2}\right)$.
4. (a) Prove that the volume of a tetrahedron is given by the formula

$$
\begin{equation*}
\text { Volume }=\frac{1}{6}|\underline{a} \times \underline{b} \cdot \underline{c}| \tag{4}
\end{equation*}
$$

(b) Find the volume of tetrahedron OABC where O is the origin and A, B and C are the points $(3,2,4),(4,3,5)$ and $(0,5,3)$.
5. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=2 e^{-2 x} \tag{6}
\end{equation*}
$$

(b) Hence determine the solution which satisfies the conditions $y(0)=1, y^{\prime}(0)=3$.

End of Question Paper

