# Prelim Examination 2002 / 2003 (Assessing Units 1 \& 2) 

## MATHEMATICS

## Advanced Higher Grade

Time allowed - $\mathbf{2}$ hours $\mathbf{3 0}$ minutes

## Read Carefully

1. Full credit will be given only where the solution contains appropriate working.
2. Calculators may be used in this paper.
3. Answers obtained by readings from scale drawings will not receive any credit.
4. This examination paper contains questions graded at all levels.

## All questions should be attempted

1. Evaluate $\int_{-1}^{0} \frac{d x}{\sqrt{3-2 x-x^{2}}}$.
2. Verify that $2 i$ is a solution of $z^{4}-4 z^{3}+17 z^{2}-16 z+52=0$.

Hence find all the solutions.
3. Use Gaussian Elimination to solve the following system of equations.

$$
\begin{aligned}
x-y+2 z & =7 \\
3 x+2 y+z & =-9 \\
2 x+y-3 z & =-20
\end{aligned}
$$

4. (a) Write the binomial expansion of $(a+b)^{4}$.
(b) Find $\left(x+\frac{2}{x}\right)^{4}-\left(x-\frac{2}{x}\right)^{4}$ in its simplest form.
5. (a) Differentiate $f(x)=e^{\frac{x+1}{x-1}}, x>1$.
(b) Find the equation of the tangent to the curve $2 x^{2}-3 x y+y^{2}=0$ at the point $(1,1)$.
6. Let $z=3-i$ and let $\bar{z}$ be the complex conjugate of $z$.

Solve $\quad a\left(\frac{z}{\bar{z}}\right)+b z=22-14 i, \quad$ for $a, b \in \mathbf{R}$.
7. If $k$ is a positive integer and the coefficient of $x^{2}$ in the expansion of $(k-4 x)^{6}$ is 19440, find the value of $k$.
8. The parametric equations $x=\frac{t-3}{2(1+2 t)}, y=\frac{t}{2(1+2 t)}$ represent a line, where $t \in \mathbf{R}$. Find the Cartesian equation of the line, and show that the point $\left(\frac{11}{2}, 1\right)$ lies on the line.
9. The first three terms of an arithmetic series are $8+16+24+\ldots$
(a) Find, in terms of $n$, an expression for $u_{n}$, the $n^{\text {th }}$ term, and $S_{n}$, the sum to $n$ terms.
(b) Hence find the sum of the natural numbers that are both multiples of 8 and smaller than 1000 .
10. Express $2-2 \sqrt{3} i$ in polar form and hence find values for $(2-2 \sqrt{3} i)^{3 / 2}$, writing your answers in the form $p+q i$, where $p, q \in \mathbf{R}$.
11. By expressing $0.2 \dot{3}$ as a geometric series, write $0.2 \dot{3}$ in the form $\frac{a}{b}$, where $\mathrm{a}, \mathrm{b} \in \mathbf{N}$.
12. Find the $4^{\text {th }}$ roots of unity and show that the sum of these roots is zero.
13. The integral $I_{n}$ is given by

$$
I_{n}=\int \sin ^{n} x d x
$$

(a) By using the fact that $\sin ^{n} x=\sin x \sin ^{n-1} x$, prove the reduction formula

$$
\begin{equation*}
I_{n}=-\frac{1}{n} \cos x \sin ^{n-1} x+\frac{n-1}{n} I_{n-2} \tag{5}
\end{equation*}
$$

(b) Use the above result to find a reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x$.
(c) Hence evaluate $\int_{0}^{\pi / 2} \sin ^{8} x$.
14. A child's drinking cup is made in the shape of a circular cylinder with a hemispherical top.


The cylinder has height $h \mathrm{~cm}$ and radius $r \mathrm{~cm}$, and the cup has a total surface area of $80 \pi \mathrm{~cm}^{2}$.
(a) Find an expression for the height $h$ in terms of the radius $r$.
[ surface area of a sphere $=4 \pi r^{2}$ ]
(b) Find the values of $h$ and $r$ for which the cup has a maximum volume. Hence find the maximum volume.
15. The function $f(x)$ is given by $f(x)=\frac{x^{2}-4}{x^{2}+8 x}$.
(a) Write down the equations of the asymptotes of $f(x)$.
(b) Prove that $f(x)$ has no stationary points.
(c) Sketch the curve of $f(x)$, showing clearly all its features.
(d) Using the sketch in part (c), construct the graph of $\frac{1}{f(x)}$, the curve of the reciprocal function.

## End of Question Paper

