All questions should be attempted

1. Differentiate with respect to x, simplifying your answer as far as possible:
(a) $y=\tan ^{-1}\left(\frac{x+1}{x-1}\right)$
(b) $y=\ln (\sec x)$
2. Use Gaussian Elimination to solve the system

$$
\begin{align*}
2 x+3 y-4 z & =-3 \\
x+2 y+3 z & =3 \tag{5}\\
3 x-y-z & =6
\end{align*}
$$

3. Prove by induction $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ for all positive integers, n.
4. Using the substitution $x=\sqrt{t}$, evaluate the integral

$$
\begin{equation*}
\int_{1 / 3}^{3} \frac{1}{t+\sqrt{t}} d t \tag{6}
\end{equation*}
$$

5. Find the coefficient of x^{5} in the expansion of $\left(x^{3}+\frac{2}{x}\right)^{7}$.
6. (a) Find partial fractions for $\frac{2 x^{2}+6 x+36}{\left(x^{2}+9\right)(x+3)}$.
(b) Hence evaluate the integral $\int_{-2}^{0} \frac{2 x^{2}+6 x+36}{\left(x^{2}+9\right)(x+3)} d x$.
7. \quad Suppose that x and y are differentiable functions of t and that

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=t^{2}+1 \quad, \quad \frac{d y}{d x}=t^{3}+3 t \tag{6}
\end{equation*}
$$

Find $x(t)$ given that $x(1)=4$.
8. PQ is a chord of the loop of the curve $y^{2}=x^{2}\left(8-x^{2}\right), x>0$.
$P Q$ is parallel to the y-axis.
Calculate the maximum possible length of PQ.

9. (a) Find two numbers x and y whose sum is 4 and whose product is 8 .
(b) Plot the solutions on an Argand diagram.
10. Use integration by parts to show that

$$
\begin{equation*}
\int x^{3} \cos x d x=3\left(x^{2}-2\right) \cos x+\left(x^{3}-6 x\right) \sin x+C \tag{5}
\end{equation*}
$$

11. (a) Find an expression for the sum of n terms of the series

$$
\begin{equation*}
2+\frac{2}{3}+\frac{2}{9}+\ldots \tag{4}
\end{equation*}
$$

in its simplest form.
(b) If $S_{n}=\frac{242}{81}$, find the value of n.
12. An investor has $£ 2000$ with which to open an account and plans to add a further $£ 1000$ each year.

All funds in the account will earn compound interest at a rate of 10% p.a. .
Let $x(t)$ be the amount of money in the account at time t years.
(a) Write down a first order differential equation representing the rate of change of money in the account each year.
(b) Hence show that $t=10 \ln \frac{(1000+0 \cdot 1 x)}{1200}$.
(c) How many years would it take to save $£ 100000$?
13. A function $f(x)$ is defined by

$$
f(x)=\left|\frac{x^{2}-2 x+2}{x-1}\right|
$$

(a) Write down the equation of the vertical asymptote of $f(x)$.
(b) For the function $g(x)=\frac{x^{2}-2 x+2}{x-1}$, show that there is a non-vertical asymptote and find its equation.
(c) Find the coordinates of the stationary points of $g(x)$ and determine their nature.
(d) By first considering the graph of $g(x)$, sketch the graph of $f(x)$ showing all its main features.
14. The semi-circle $y=\sqrt{a^{2}-x^{2}}$ is rotated about the x -axis to generate a sphere.
(a) Find an expression for the volume of the sphere.
(b) Find the volume of the sphere with equation $y=\sqrt{25-x^{2}}$.

END OF QUESTION PAPER

