	Give one mark for each -	Illustrations for awarding each mark
1(a)	ans: $\frac{d y}{d x}=-\frac{1}{x^{2}+1}$ - know how to differentiate $\tan ^{-1}$ - chain rule factor - manipulating algebra - answer in simplest form	- $\frac{1}{1+\left(\frac{x+1}{x-1}\right)^{2}}$ - $-\frac{2}{(x-1)^{2}}$ - $\frac{(x-1)^{2}}{2 x^{2}+2} \times-\frac{2}{(x-1)^{2}}$ - $-\frac{1}{x^{2}+1}$
1(b)	ans: $\frac{d y}{d x}=\tan x$ 3 marks - know how to differentiate log - chain rule factor - answer in simplest form	- $\frac{1}{\sec x}$ - $\sec x \tan x$ - $\tan x$
2.	ans: $(2,-1,1)$ - write system as an augmented matrix with 1 in top left-hand corner (optional) - first modified system - second modified system - using back-substitution to find z - using back-substitution to find x and y	$\begin{aligned} & \text { - }\left[\begin{array}{ccc:c} 1 & 2 & 3 & 3 \\ 2 & 3 & -4 & -3 \\ 3 & -1 & -1 & 6 \end{array}\right] \\ & \text { - }\left[\begin{array}{ccc:c} 1 & 2 & 3 & 3 \\ 0 & -1 & -10 & -9 \\ 0 & -7 & -10 & -3 \end{array}\right] \\ & -\left[\begin{array}{ccc:c} 1 & 2 & 3 & 3 \\ 0 & -1 & -10 & -9 \\ 0 & 0 & 60 & 60 \end{array}\right] \\ & \text { - } z=1 \\ & \text { - } y=-1, x=2 \end{aligned}$

	Give one mark for each •	Illustrations for awarding each mark
3.	ans: proof by induction - show true for $n=1$ - state inductive hypothesis - consider the case for $n=k+1$ - carry out manipulation - state conclusion	- $\left\{\begin{array}{l}L H S=\frac{d}{d x}(x)=1 ; R H S=1 \times x^{1-1}=1 \\ \text { So true when } n=1\end{array}\right.$ - Assume $\frac{d}{d x}\left(x^{k}\right)=k x^{k-1}$ - Consider $\frac{d}{d x}\left(x^{k+1}\right)$ - $\frac{d}{d x}\left(x \cdot x^{k}\right)=x^{k}+x \cdot k x^{k-1}=x^{k}+k x^{k}$ $=(k+1) x^{k}$ - So, if the formula is valid for n, it is valid for $n+1$. Since it is valid for $n=1$, it is therefore true for all $n \geq 1$.
4.	ans: $\ln 3$ - rewrite integral in terms of x - correct limits - tidy up integral - integrate - evaluate limits - manipulate surds - final answer	- and • $\int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{2 x}{x^{2}+x} d x$ - $\int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{2}{x+1} d x$ - $2 \ln (x+1)]^{\sqrt{3}} \sqrt{3}$ - $2 \ln (\sqrt{3}+1)-2 \ln \left(\frac{1}{\sqrt{3}}+1\right)$ - and • $2 \ln \left(\frac{\sqrt{3}+1}{\frac{1}{\sqrt{3}}+1} \times \frac{\frac{1}{\frac{\sqrt{3}}{3}}-1}{\frac{1}{\sqrt{3}}-1}\right)$ $=2 \ln \left(-\frac{3}{2}\left(\frac{1}{\sqrt{3}}-\sqrt{3}\right)\right)=2 \ln \sqrt{3}=\ln 3$
5.	ans: 560 3 marks - correct general term - put power of x equal to 5 and solve for r - calculate coefficient	- $\binom{7}{r}\left(x^{3}\right)^{7-r}\left(\frac{2}{x}\right)^{r}=\binom{7}{r} 2^{r} x^{21-4 r}$ - $21-4 r=5 ; r=4$ - $\binom{7}{4} 2^{4}=35 \times 16=560$

	Give one mark for each -	Illustrations for awarding each mark
6(a)	ans: $\frac{6}{x^{2}+9}+\frac{2}{x+3}$ - know how to find partial fractions - know how to find A, B and C - finds A - finds B and C	- $\frac{A x+B}{x^{2}+9}+\frac{C}{x+3}$ - $2 x^{2}+6 x+36=(x+3)(A x+B)+C\left(x^{2}+9\right)$ - $A=0$ - $B=6$ and $C=2$
6(b)	ans: 3.37 units 2 - knows to express integral in partial fractions - and • integrates terms correctly - evaluates limits - final answer	- $\int_{-2}^{0}\left(\frac{6}{x^{2}+9}+\frac{2}{x+3}\right) d x$ - and - $2 \tan ^{-1} \frac{x}{3}+2 \ln \|x+3\|$ - $2 \tan ^{-1} 0+2 \ln 3-\left(2 \tan ^{-1}\left(-\frac{2}{3}\right)+2 \ln 1\right)$ - 3.37 units 2
7.	ans: $x(t)=3 t+1$ - knows formula for $\frac{d^{2} y}{d x^{2}}$ in parametric form - finds $\frac{d}{d t}\left(\frac{d y}{d x}\right)$ - substitutes information into formula - finds $\frac{d x}{d t}$ in simplest form - integrates $\frac{d x}{d t}$ to find x - finds constant of integration	- $\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$ - $3 t^{2}+3$ - $t^{2}+1=\frac{3 t^{2}+3}{\frac{d x}{d t}}$ - 3 - $x(t)=\int 3 d t=3 t+c$ - $x(1)=4 ; c=1$
8.	ans: 8 units - knows to find max. and min. turning points - knows to use implicit differentiation - differentiates correctly - finds x-coordinate of relevant turning point - finds corresponding y-coordinates - finds max. distance	- $\frac{d y}{d x}=\frac{2 x\left(4-x^{2}\right)}{y}$ - $x=-2,0$ or 2 and chooses $x=2$ from diagram - $y=-4$ or 4 - 8

	Give one mark for each -	Illustrations for awarding each mark
9(a)	ans: $2+2 i, 2-2 i$ - set up system of equations - use substitution to obtain quadratic - use quadratic formula to solve quadratic - correct answer	- $x+y=4 ; x y=8$ - $x^{2}-4 x+8=0$ - $x=\frac{4 \pm \sqrt{16-4(1)(8)}}{2}$ - $x=2+2 i$ or $x=2-2 i$
9(b)	ans: Diagram - Argand diagram correctly labelled - both points plotted and labelled	
10.	ans: Proof 5 marks - first application of integration by parts - second application of integration by parts - knowing to use integ. by parts again - third application of integration by parts - answer in required form	- $x^{3} \sin x-\int 3 x^{2} \sin x d x$ - and • $\begin{aligned} & x^{3} \sin x-\left\lfloor-3 x^{2} \cos x+\int 6 x \cos x d x\right] \\ & =x^{3} \sin x+3 x^{2} \cos x-\int 6 x \cos x d x \end{aligned}$ - $x^{3} \sin x+3 x^{2} \cos x-6 x \sin x-6 \cos x+C$ - $3\left(x^{2}-2\right) \cos x+\left(x^{3}-6 x\right) \sin x+C$
11(a)	ans: $3\left(1-\frac{1}{3^{n}}\right)$ - correct ratio - using correct formula - substituting correctly into formula - answer in simplest form	- $r=\frac{1}{3}$ - $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$ - $\frac{2\left(1-\left(\frac{1}{3}\right)^{n}\right)}{1-\frac{1}{3}}=\frac{2\left(1-\frac{1}{3^{n}}\right)}{\frac{2}{3}}$ - $3\left(1-\frac{1}{3^{n}}\right)$

[^0]| | Give one mark for each - | Illustrations for awarding each mark |
| :---: | :---: | :---: |
| 11(b) | ans: $n=5$
 - use formula correctly
 - manipulate formula
 - answer | - $\frac{242}{81}=3\left(1-\frac{1}{3^{n}}\right) \Rightarrow \frac{242}{243}=1-\frac{1}{3^{n}}$
 - $3^{n}=243$
 - $n=5$ (using logs or trial and error) |
| 12(a) | ans: $\frac{d x}{d t}=1000+0 \cdot 1 x \quad 2$ marks
 - amount of money going into account each year
 interest @ 10\% | - 1000
 - $0 \cdot 1 x$ |
| 12(b) | ans: $t=10 \ln \frac{1000+0 \cdot 1 x}{1200}$
 7 marks
 - know to use method of separating variables
 - separates variables correctly
 - integrates LHS correctly
 - integrates RHS correctly (incl. constant of integration)
 - correct initial conditions
 - finds correct value of C
 - finds required solution | - and • $\int \frac{d x}{1000+0 \cdot 1 x}=\int d t$
 - and $\cdot 10 \ln (1000+0 \cdot 1 x)=t+C$
 - $x=2000$ at $t=0$
 - $C=10 \ln 1200$
 - $t=10 \ln \frac{1000+0 \cdot 1 x}{1200}$ |
| 12(c) | ans: 23 years
 - substitute in value for x
 - answer | - $t=10 \ln \frac{1000+0 \cdot 1 \times 100000}{1200}=10 \ln \frac{11000}{1200}$
 - 22.16 years ≈ 23 years |
| 13(a) | $\text { ans: } x=1$
 1 mark
 - states equation of vertical asymptote | - $x=1$ |
| 13(b) | ans: $y=x-1 \quad 3$ marks
 - knows to divide
 - restating function
 - correctly stating equation of asymptote | and • $\frac{x^{2}-2 x+2}{x-1}=(x-1)+\frac{1}{x-1}$
 - $y=x-1$ |

[^1]| | Give one mark for each - | Illustrations for awarding each mark |
| :---: | :---: | :---: |
| 13(c) | ans: Max at $(0,-2)$, Min at $(2,2)$
 - knows to find $\frac{d y}{d x}$
 - knows to put $\frac{d y}{d x}=0$
 - finds x-coordinates
 - finds y-coordinates
 - determines nature of each by second derivative or nature table | - $\frac{d y}{d x}=1-\frac{1}{(x-1)^{2}}$
 - $1-\frac{1}{(x-1)^{2}}=0$
 - $x=0$ or $x=2$
 - $(0,-2),(2,2)$
 - $\frac{d^{2} y}{d x^{2}}=\frac{2}{(x-1)^{3}} ;$ Max at $(0,-2), \operatorname{Minat}(2,2)$ |
| 13(d) | ans: sketch
 - sketch showing all relevant points
 - correctly shows how curve approaches asymptotes
 - knows to reflect all parts of graph from below the x-axis to above the x-axis
 - reflects correctly | See sketch at end of marking scheme |
| 14(a) | ans: $\frac{4}{3} \pi a^{3}$
 - draws sketch showing semi-circle above x-axis
 - Roots of semi-circle at $-a$ and a
 - knows how to find volume of revolution
 - limits of integration as $-a$ and a
 - applies formula correctly
 - integrates correctly
 - evaluates limits
 - correct answer | - and •
 - and • $V=\int_{-a}^{a} \pi y^{2} d x$
 - $V=\int_{-a}^{a} \pi\left(a^{2}-x^{2}\right) d x$
 - $\pi\left[a^{2} x-\frac{x^{3}}{3}\right]_{a}^{a}$
 - $\pi\left[a^{2}(a)-\frac{a^{3}}{3}\right]-\pi\left[a^{2}(-a)-\frac{(-a)^{3}}{3}\right]$
 - $\frac{4}{3} \pi a^{3}$ |
| 14(b) | ans: 523.6 units $^{3} \quad 2$ marks
 - knows to put $a=5$
 - finds volume | - $\frac{4}{3} \pi\left(5^{3}\right)$
 - 523.6 units 3 |

Total 100 Marks

Sketch for question 13(d)

[^0]: Marking Scheme - Advanced Higher Prelim - Mathematics 1 \& 2 (cont.)

[^1]: Marking Scheme - Advanced Higher Prelim - Mathematics 1 \& 2 (cont.)

