	Give one mark for each •	Illustrations for awarding each mark
1(a)	ans: $\frac{dy}{dx} = -\frac{1}{x^2 + 1}$ 4 marks	
	• know how to differentiate tan ⁻¹	• $\frac{1}{1+\left(\frac{x+1}{x-1}\right)^2}$
	• chain rule factor	$\bullet -\frac{2}{(x-1)^2}$
	• manipulating algebra	• $\frac{(x-1)^2}{2x^2+2} \times -\frac{2}{(x-1)^2}$
	• answer in simplest form	• $-\frac{1}{x^2+1}$
1(b)	ans: $\frac{dy}{dx} = tan x$ 3 marks	
	• know how to differentiate log	• $\frac{1}{\sec x}$
	• chain rule factor	• sec x tan x
	• answer in simplest form	• tan x
2.	ans: (2, -1, 1) 5 marks	
	• write system as an augmented matrix with 1 in top left-hand corner (optional)	
	• first modified system	$\left[\begin{array}{cccccccccc} 1 & 2 & 3 & 3 \\ 0 & -1 & -10 & -9 \\ 0 & -7 & -10 & -3 \end{array} \right]$
	• second modified system	
	 using back-substitution to find z using back-substitution to find x and y 	• $z = 1$ • $y = -1, x = 2$

	Give one mark for each ●	Illustrations for awarding each mark
3.	ans: proof by induction 5 marks	
	• show true for $n = 1$	• $\begin{cases} LHS = \frac{d}{dx}(x) = 1; RHS = 1 \times x^{1-1} = 1\\ So true when n = 1 \end{cases}$
	• state inductive hypothesis	• Assume $\frac{d}{dx}(x^k) = k x^{k-1}$
	• consider the case for $n = k + 1$	• Consider $\frac{d}{dx}(x^{k+1})$
	• carry out manipulation	• $\frac{d}{dx}(x \cdot x^k) = x^k + x \cdot kx^{k-1} = x^k + kx^k$ $= (k+1)x^k$
	• state conclusion	• So, if the formula is valid for n , it is valid for $n+1$. Since it is valid for $n = 1$, it is therefore true for all $n \ge 1$.
4.	ans: <i>ln</i> 3 7 marks	
	 rewrite integral in terms of x correct limits tidy up integral integrate evaluate limits manipulate surds final answer 	• and • $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{2x}{x^2 + x} dx$ • $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{2}{x + 1} dx$ • $2ln(x + 1)]_{\frac{1}{\sqrt{3}}}^{\sqrt{3}}$ • $2ln(\sqrt{3} + 1) - 2ln(\frac{1}{\sqrt{3}} + 1)$ • and • $2ln\left(\frac{\sqrt{3} + 1}{\frac{1}{\sqrt{3}} + 1} \times \frac{\frac{1}{\sqrt{3}} - 1}{\frac{1}{\sqrt{3}} - 1}\right)$ = $2ln\left(-\frac{3}{2}(\frac{1}{\sqrt{3}} - \sqrt{3})\right) = 2ln \sqrt{3} = ln 3$
5	angi 560 2 manka	
5.	 ans: 500 5 marks correct general term put power of <i>x</i> equal to 5 and solve for <i>r</i> calculate coefficient 	• $\binom{7}{r} (x^3)^{7-r} (\frac{2}{x})^r = \binom{7}{r} 2^r x^{21-4r}$ • $21 - 4r = 5; r = 4$ • $\binom{7}{4} 2^4 = 35 \times 16 = 560$

	Give one mark for each •	Illustrations for awarding each mark
6(a)	ans: $\frac{6}{x^2+9} + \frac{2}{x+3}$ 4 marks	
	• know how to find partial fractions	• $\frac{Ax+B}{x^2+9} + \frac{C}{x+3}$
	• know how to find <i>A</i> , <i>B</i> and <i>C</i>	• $2x^2 + 6x + 36 = (x+3)(Ax+B) + C(x^2+9)$
	• finds A • finds R and C	• $A = 0$
		• $B = 6$ and $C = 2$
6(b)	ans: 3.37 units ² 5 marks	
	• knows to express integral in partial fractions	• $\int_{-2}^{0} \left(\frac{6}{x^2 + 9} + \frac{2}{x + 3} \right) dx$
	• and • integrates terms correctly	• and • $2tan^{-1}\frac{x}{3} + 2ln x+3 $
	• evaluates limits	• $2\tan^{-1}0 + 2\ln 3 - \left(2\tan^{-1}\left(-\frac{2}{3}\right) + 2\ln 1\right)$
	• final answer	• 3.37 units ²
7.	ans: $x(t) = 3t + 1$ 6 marks	
	• knows formula for $\frac{d^2 y}{dx^2}$ in parametric form • finds $\frac{d}{dt} \left(\frac{dy}{dx} \right)$	• $\frac{d^2 y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}}$ • $3t^2 + 3$
	• substitutes information into formula	• $t^2 + 1 = \frac{3t^2 + 3}{\frac{dx}{dt}}$
	• finds $\frac{dx}{dt}$ in simplest form	• 3
	• integrates $\frac{dx}{dt}$ to find x	• $x(t) = \int 3 dt = 3t + c$
	• finds constant of integration	• $x(1) = 4$; $c = 1$
8.	ans: 8 units 6 marks	
	 knows to find max. and min. turning points knows to use implicit differentiation 	• $\frac{dy}{dt} = \frac{2x(4-x^2)}{2x(4-x^2)}$
	• unrerentiates confectly	dx y $2.0 = 2$ and dx 2.5 i
	 finds x-coordinate of relevant turning point finds corresponding y-coordinates 	• $x = -2$, 0 or 2 and chooses $x = 2$ from diagram • $y = -4$ or 4
	• finds max. distance	• 8

	Give one mark for each •	Illustrations for awarding each mark
Q(a)	ans: 2 + 2i - 2i - 4 marks	mustrations for awarding cach mark
	 ans. 2 + 2i, 2 - 2i set up system of equations use substitution to obtain quadratic use quadratic formula to solve quadratic correct answer 	• $x + y = 4; xy = 8$ • $x^2 - 4x + 8 = 0$ • $x = \frac{4 \pm \sqrt{16 - 4(1)(8)}}{2}$ • $x = 2 + 2i$ or $x = 2 - 2i$
9(b)	ans: Diagram 2 marks	
	 Argand diagram correctly labelled both points plotted and labelled 	$ \begin{array}{c} Im \\ \bullet 2+2i \\ \bullet & Re \\ \bullet & 2-2i \end{array} $
10.	ans: Proof 5 marks	
	 first application of integration by parts second application of integration by parts knowing to use integ. by parts again third application of integration by parts answer in required form 	• $x^{3} \sin x - \int 3x^{2} \sin x dx$ • and • $x^{3} \sin x - \left[-3x^{2} \cos x + \int 6x \cos x dx\right]$ • and • $x^{3} \sin x + 3x^{2} \cos x - \int 6x \cos x dx$ • $x^{3} \sin x + 3x^{2} \cos x - 6x \sin x - 6\cos x + C$ • $3(x^{2} - 2)\cos x + (x^{3} - 6x)\sin x + C$
11(a)	ans: $3\left(1-\frac{1}{2}\right)$ 4 marks	
	 correct ratio using correct formula substituting correctly into formula answer in simplest form 	• $r = \frac{1}{3}$ • $S_n = \frac{a(1-r^n)}{1-r}$ • $\frac{2(1-(\frac{1}{3})^n)}{1-\frac{1}{3}} = \frac{2(1-\frac{1}{3^n})}{\frac{2}{3}}$ • $3(1-\frac{1}{3^n})$

Marking Scheme - Advanced Higher Prelim – Mathematics 1 & 2 (cont.)

	Give one mark for each •	Illustrations for awarding each mark
11(b)	ans: $n = 5$ 3 marks	
	use formula correctlymanipulate formulaanswer	• $\frac{242}{81} = 3\left(1 - \frac{1}{3^n}\right) \Rightarrow \frac{242}{243} = 1 - \frac{1}{3^n}$ • $3^n = 243$ • $n = 5$ (using logs or trial and error)
12(a)	ans: $\frac{dx}{dt} = 1000 + 0 \cdot 1x$ 2 marks	
	 amount of money going into account each year interest @ 10% 	 1000 0.1x
12(b)	ans: $t = 10 ln \frac{1000 + 0 \cdot 1x}{1200}$ 7 marks	
	 know to use method of separating variables separates variables correctly	• and • $\int \frac{dx}{1000+0.1x} = \int dt$
	 integrates LHS correctly integrates RHS correctly (incl. constant of integration) 	• and • $10\ln(1000 + 0.1x) = t + C$
	 correct initial conditions finds correct value of C 	• $x = 2000$ at $t = 0$ • $C = 10 ln 1200$
	• finds required solution	• $t = 10 \ln \frac{1000 + 0 \cdot 1x}{1200}$
12(c)	ans: 23 years 2 marks	
	substitute in value for <i>x</i>answer	• $t = 10 ln \frac{1000 + 0.1 \times 100000}{1200} = 10 ln \frac{11000}{1200}$ • 22.16 years ≈ 23 years
13(a)	ans: $x = 1$ 1 mark	
	• states equation of vertical asymptote	• $x = 1$
13(b)	ans: $y = x - 1$ 3 marks	
	 knows to divide restating function correctly stating equation of asymptote 	• and • $\frac{x^2 - 2x + 2}{x - 1} = (x - 1) + \frac{1}{x - 1}$ • $y = x - 1$

Marking Scheme - Advanced Higher Prelim – Mathematics 1 & 2 (cont.)

	Give one mark for each •	Illustrations for awarding each mark
13(c)	ans: Max at (0, -2), Min at (2, 2) 5 marks	
	• knows to find $\frac{dy}{dx}$	• $\frac{dy}{dx} = 1 - \frac{1}{(x-1)^2}$
	• knows to put $\frac{dy}{dx} = 0$	• $1 - \frac{1}{(x-1)^2} = 0$
	finds x-coordinatesfinds y-coordinates	 x = 0 or x = 2 (0, -2), (2, 2)
	• determines nature of each by second derivative or nature table	• $\frac{d^2 y}{dx^2} = \frac{2}{(x-1)^3}$; Max at $(0, -2)$, Min at $(2, 2)$
13(d)	ans: sketch 4 marks	
	 sketch showing all relevant points correctly shows how curve approaches asymptotes knows to reflect all parts of graph from 	See sketch at end of marking scheme
	below the <i>x</i>-axis to above the <i>x</i>-axisreflects correctly	
14(a)	ans: $\frac{4}{3}\pi a^3$ 8 marks	
	 draws sketch showing semi-circle above <i>x</i>-axis Roots of semi-circle at -<i>a</i> and <i>a</i> 	• and • $-a$ a a a
	 knows how to find volume of revolution limits of integration as -a and a 	• and • $V = \int_{-a}^{a} \pi y^2 dx$
	• applies formula correctly	• $V = \int_{-a}^{a} \pi \left(a^2 - x^2\right) dx$
	• integrates correctly	• $\pi \left[a^2 x - \frac{x^3}{3} \right]_a^a$
	• evaluates limits	• $\pi \left[a^2(a) - \frac{a^3}{3} \right] - \pi \left[a^2(-a) - \frac{(-a)^3}{3} \right]$
	• correct answer	• $\frac{4}{3}\pi a^3$
14(b)	ans: 523.6 units ³ 2 marks	
	 knows to put a = 5 finds volume 	• $\frac{4}{3}\pi(5^3)$ • 523.6 units ³

Total 100 Marks

