Chain Rule	Product Rule
Quotient Rule	Parametric Differentiation 1 st Derivative
Parametric Differentiation 2 nd derivative	Parametric Differentiation Speed
Derivative of an Inverse Function	

$$h(x) = f(x)g(x)$$

$$h'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\frac{d}{dx}(f(g(x)) = f'(g(x)).g'(x)$$

$$h(x) = \frac{f(x)}{g(x)}$$

$$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

$$speed = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

$$\frac{d^2y}{dx^2} = \frac{y''x' - y'x''}{(x')^3}$$

$$\frac{d}{dx}(f^{-1}(x)) = \frac{1}{f'(f^{-1}(x))}$$

Volume of Revolution	Volume of Revolution
about the x-axis	about the y-axis
between the lines	between the lines
x = b and $x = a$	y = b and $y = a$
Integration by Parts	Rectilinear Motion Displacement (<i>x</i>)
Rectilinear Motion	Rectilinear Motion
Velocity (v)	Acceleration (<i>a</i>)
Integration	Integration
$\int \frac{f'(x)}{f(x)} dx =$	$\int f'(x)f(x)dx =$

$$V = \int_{a}^{b} \pi x^{2} dy$$

$$V = \int_{a}^{b} \pi y^{2} dx$$

$$x = \int v dt$$

$$\int f g' = f g - \int f' g$$

$$a = \frac{dv}{dt}$$

$$v = \int a dt$$

$$\frac{1}{2} (f(x))^{2} + c$$

$$\ln|f(x)| + c$$

$\sec x =$	$\csc x =$
$\cot x =$	
Matrices INCONSISTENT	Matrices REDUNDANT
Matrices ILL-CONDITIONED	

$\frac{1}{\sin x}$	$\frac{1}{\cos x}$
	$\frac{1}{\tan x}$
$\begin{pmatrix} 1 & 2 & 2 & 11 \\ 0 & -3 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ From row 3 we can see that this equations is REDUNDANT i.e. there is an infinite number of solutions.	$\begin{pmatrix} 1 & 2 & 2 & 11 \\ 0 & -5 & -3 & -14 \\ 0 & 0 & 0 & -1 \end{pmatrix}$ From row 3 we can see that this equations is INCONSISTENT i.e. there are NO solutions.
	This occurs when a SMALL change in the coefficients of the equations leads to a LARGE change in the solutions.

Complex Numbers	Complex Numbers
Complex Conjugate of	Polar Form
z = x + iy	Modulus
Complex Numbers Polar Form Arguement	Complex Numbers De Moivre' Theorem
Partial Fractions	Partial Fractions
Distinct Linear Factors	Repeated Linear Factor
Partial Fractions Irreducible Quadratic Factor	

Modulus
$$r = \sqrt{x^2 + y^2}$$
 $z = x - iy$ $z = r(\cos \theta + i \sin \theta)$ Argument
 $\theta = \tan^{-1} \frac{y}{x}$ $\frac{f(x)}{(x + a)(x + b)^2} = \frac{A}{(x + a)} + \frac{B}{(x + b)} + \frac{C}{(x + a)(x^2 + bx + c)}$ $\frac{f(x)}{(x + a)(x^2 + bx + c)} = \frac{A}{(x + a)} + \frac{B}{(x^2 + bx + c)}$

Matrices	Matrices
Determinant 2 × 2	Determinant 3 × 3
Matrices	Transformation Matrix
Transpose of a Matrix	Reflection in the <i>x</i> -axis
Transformation Matrix	Transformation Matrix
Reflection in the <i>y</i> -axis	Reflection in the <i>origin</i>
Transformation Matrix Reflection in line $y = x$	Transformation Matrix Reflection in the line through O which makes an angle of θ with the <i>x</i> -axis.

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \qquad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$det A = a \begin{vmatrix} e & f \\ i \end{vmatrix} - b \begin{vmatrix} g & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix} \qquad det A = ad - bc$$
Interchange the rows and columns.
$$A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$$
$$A' = \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix}$$
$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} (-1 & 0 \\ 0 & 1) \end{pmatrix}$$
$$\begin{pmatrix} (\cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Transformation Matrix Rotation through θ° in an anti- clockwise direction.	
Vectors	Vectors
Direction Ratios	Direction Cosines
Vectors	Vectors
Vector Product	Scalar Triple Product

$$\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \qquad \underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
direction cosines $\frac{a_1}{|\underline{a}|} : \frac{a_2}{|\underline{a}|} : \frac{a_3}{|\underline{a}|}$
direction ratio $a_1 : a_2 : a_3$

$$\underline{a} \cdot (\underline{b} \times \underline{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \qquad \underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

$$\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

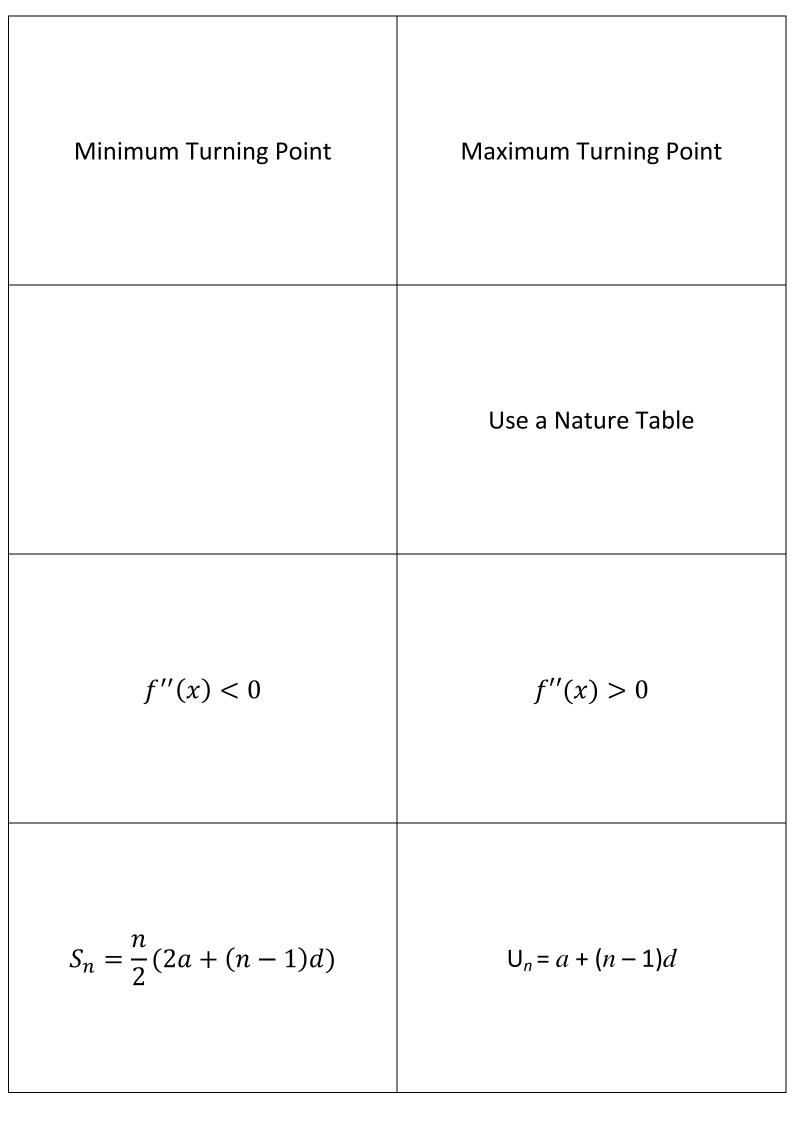
$$\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

$$\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ b_3 \end{pmatrix}$$

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{b}_1 \\ b_2 \\ b_3 \end{vmatrix}$$

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} \\ a_2 \\ a_3 \end{pmatrix}$$

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} \\ b_2 \\ b_3 \end{vmatrix}$$


$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} \\ b_2 \\ b_3 \end{vmatrix}$$

$$\underline{a} = \begin{bmatrix} a_1 \\ a_2 \\ b_3 \end{pmatrix}$$

Differential Equations	Differential Equations
Variable Separable	First Order Linear
Second Order Differential	Second Order Differential
Equations	Equations
Auxiliary Equation	Auxiliary Equation
Roots - Real & Distinct	Roots - Real & Equal
Second Order Differential Equations Auxiliary Equation Roots - Complex	
Odd Functions	Even Functions

$\frac{dy}{dx} + P(x)y = Q(x)$ $I(x) = e^{\int P(x)dx}$ $I(x)y = \int I(x)Q(x) dx$	$\frac{dy}{dx} = f(x)g(y)$ $\int \frac{dy}{g(y)} = \int f(x)dx$
Complementary Function $y = Ae^{mx} + Bxe^{mx}$	Complementary Function $y = Ae^{m_1 x} + Be^{m_2 x}$
	Complementary Function $y = e^{px}(A\cos qx + B\sin qx)$
f(-x) = f(x)	f(-x) = -f(x)

Nature of Stationary Points $\frac{d^2y}{dx^2} < 0$	Nature of Stationary Points $\frac{d^2y}{dx^2} > 0$
Nature of Stationary Points $\frac{d^2y}{dx^2} = 0$	
Concavity	Concavity
Concave Upwards	Concave Downwards
Arithmetic Sequence	Arithmetic Series
n th term	sum of 1 st n terms

Geometic Sequence n th term	Geometric Series sum of 1 st n terms
Geometric Series sum to infinity	Pascal's Triangle
Binomial Theorem	Binomial Coefficient

$$S_{n} = \frac{a(1 - r^{n})}{1 - r}$$

$$U_{n} = ar^{(n-1)}$$

$$if -1 < r < 1 \text{ then}$$

$$1 \quad 2 \quad 1$$

$$1 \quad 2 \quad 1$$

$$1 \quad 3 \quad 3 \quad 1$$

$$1 \quad 4 \quad 6 \quad 4 \quad 1$$

$$S_{\infty} = \frac{a}{1 - r}$$

$$nC_{r} = \frac{n!}{r!(n-r)!} = \binom{n}{r}$$

$$(x + y)^{n} = \sum_{r=0}^{r=n} \binom{n}{r} x^{n-r} y^{r}$$