Abronhill High School

Mathematics Department

Homework/Revision Booklet

Convert between 12 and 24-hour time

1. Change the following to 24 hour times :-

	(a) 8·30 am	(b)	1·50 pm	(c)	4·20 pm	(d)	9∙01 pm		
	(e) 6·10 am	(f)	9·45 pm	(g)	11·12 pm	(h)	12·10 pm		
	(i) 7·08 pm	(j)	11·59	(k)	11·59 am	(I)	midnight		
	(m) Quarter past nine	at nig	ght	(n)	Half past two in t	he aft	ernoon		
	(o) Quarter to six in the evening				Twelve minutes to midnight.				
2.	Change the following	to 12	hour times :-						
	(a) 0440	(b)	1610	(c)	2205	(d)	1910		
	(e) 1130	(f)	0010	(g)	1255	(h)	1010		
	(i) 1706	(j)	0101	(k)	2010	(I)	0000		

(b) 5.15 am to 8.55 am

(d) 1430 to 1945

Time Intervals

- 1. How long is it from :-
 - (a) 3.05 pm to 5.20 pm
 - (c) 9.50 pm to 11.15 pm
 - (f) 1442 to 2020
- 2. Kay is not sure which video to watch.
 - (a) If she starts to watch one of the videos at 8.35 pm, list the finishing time of each video.
 - (b) Kay decides to watch all three videos. What time would the last video finish?
- 3. New york is 5 hours behind our time (ie Glasgow time 6 pm \rightarrow New York time 1 pm).

An aeroplane leaves Glasgow for New York at 1.45 pm with a flight time of 6 hours 35 mins.

What is the time in New York when the plane lands?

Decimal Time

- 1. Round the following times to 1 decimal place :-(c) 20.97 secs (b) 15.05 secs 0.709 secs (a) 8.16 secs (d)
- 2. In a Formula 1 trial the following times were recorded; Cooltad : 54.09 secs, Jenson: 54.62 secs, Chewmaker : 54.1 secs, Hall : 54.3 secs.
- List the drivers in order, pole position (winner) first.
- 3. State the times shown in the following stopwatches :-(d) (a) (b) (c) 5 15 20 5 15 20 1 15 30 75 1 15 30 7 4. Ben and Bob came second and third in a sprint. (۲ (a) By how much did Ben beat Bob? nin sea (b) James beat Bob by 1.5 secs.

59 45

Ber

0

- (i) What was James' time
- (ii) By how much did James win the race?

(c) Write your answer to (b), (ii) as a fraction in thousandths of a second.

- (c) 6.30 pm to 8.05 pm
- (e) 0950 to 1605
- (g) Quarter to six in the morning until five past nine at night.

01 20

Roh

Abronhill High School

Timetables

Here are the bus timetables for <u>"Stirling <-> John O'Groats"</u>

Stirling	Stirling <-> John O'Groats								
Stirling	leave	0955	2300						
Perth	arrive	1050	2355						
	leave	1050	midnight						
Dunkeld	arrive	1120	0025						
Pitlochry	arrive	noon	0105						
	leave	1310	0120						
Kingussie		1430	0240						
Carrbridge		1508	0310						
Inverness	arrive	1558	0405						
*	leave	1640	0405						
John O'Groat	s arrive	1800	0530						

John O'Groats <> Stirling									
John O'Groats	leave	leave 1000							
Inverness		1140	2340						
Carrbridge		1232	0032						
Kingussie	arrive	1300	0105						
	leave	1345	0110						
Pitlochry		1425	0150						
Dunkeld	arrive	1455	0220						
	leave	1505	0220						
Perth	arrive	1532	0251						
	leave	1532	0315						
Stirling V	arrive	1610	0440						

- (a) How long does it take from Inverness to John O'Groats on each of the 0955 and the 2300 services from Stirling?
- (b) At what times do the buses leave Kingussie for Pitlochry ? (answer using a.m. or p.m.)
- (c) Where will you have time for lunch on each of the day time services ? How long in each case ?
- (d) On the **night time services** where will you have time for a comfort stop and for how long in each case ?
- (e) Which of the two evening service takes longer and by how much?
- (f) If you dislike travelling by bus, but had to undertake a journey from John O'Groats to Stirling, which bus would you choose to take and why?

A plane leaves Edinburgh Airport at 2340 on Wednesday. It touches down in Teneriffe at 0410 (British time) on Thursday.

How long did the flight take ?

British Airways flight BA447 left Gatwick Airport at 10.25 pm on Monday and arrived in New York at 5.10 pm (British time) on Tuesday morning.

- (a) How long did the flight take ?
- (b) New York is 5 hours <u>behind</u> Britain. What time (New York time) was it really when the plane touched down?

Look at the T.V. programme listings and answer the following :-

- (c) "GMTV" lasts for how long?
- (d) I watch "Passport Quiz" on Scottish till the end of the programme, then switch to BBC1 for "Dragan Sgeul".
 How much have I already missed of "Dragan Sgeul" ?
- (e) I want to record "Real Rooms", "Family Fortunes", "Working Lunch", "Bill & Ben" and "Scotland Today" on a 2 hour tape. Is this possible ? Explain !!

Calculating DISTANCE

Abronhill High School

- 1. Copy and complete the formula to calculate the distance travelled
- 2. Use your formula to calculate each of the following distances :-
 - (a) A car travelling at 40 km/hr for 3 hours.
 - (b) A runner travelling at 9 m.p.h. for 2 hours.
 - (c) A train travelling at 85 km/hr for 4 hours.
 - (d) A jet travelling for 5 hours at a speed of 450 m.p.h.
- 3. A camel walks at 8 km/hr.
 - How far would it travel in :-
 - (a) 3 hours (b) 30 minutes (c) $\frac{1}{4}$ of an hour?
- 4. (a) How far will Ellie jog at 14 km/hr if she runs for 45 minutes ?
 - (b) How far will a car travel at 50 km/hr for 90 minutes ?
- A spaceship travels at 3000 km/hr.
 How far will it travel in a day ?

Calculating Speed

- 1. Copy and complete the formula for calculating speed :-
- 2. Use your formula to calculate the following speeds :-
 - (a) A car travels 180 kilometres and takes 3 hours.
 - (b) A plane flying for 8 hours and travelling 3200 miles.
 - (c) A bird flying 20 kilometres and taking 2 hours.
- 3. A train has to make a journey of 200 kilometres.

How fast would it need to travel to complete the journey in :-

(a) 2 hours (b) 4 hours (c) 5 hours

Calculating Time

- 1. Copy and complete the formula to calculate the distance travelled :-
- 2. Use your formula to calculate the time taken for each of the following :-
 - (a) A car travels 240 kilometres at 60 km/hr.
 - (b) A jet travels 2000 miles at a speed of 500 m.p.h.
 - (c) A cat running at 4 metres/sec and covers 26 metres.

S =

(d) $\frac{1}{2}$ hour ?

D = ... × ...

Distance-Time Graphs

- 1. The distance-time graph shows the journey Maggie made from her house to her favourite clothes shop and home again.
 - (a) How long did the drive to the shop take ?
 - (b) How far away is the shop from her house ?
 - (c) How long did she stay at the shop ?
 - (d) Calculate Maggie's speed :-
 - (i) going to the shop.
 - (ii) on the journey home.

2. On Saturday, sisters Jackie and Gill both leave from home and drive to Airdrie.

- (a) At what time did each of the sisters leave their house ?
- (b) How far away is Airdrie from their house?
- (c) Who arrived in Airdrie first and by how many minutes?
- (d) Calculate the speed of each sister.
- (e) Jackie left Airdrie at Noon and drove home at 25 km/hr. Gill drove home at 30 km/hr.

If both sisters arrived home at the same time, when must Gill have left Airdrie (to the nearest minute)?

Fractions/Percentages Revision

1. For each shape, say what fraction has been shaded :-

	(a)		(b)		(c)		(d)	\sum
2.	Sim	plify each of the	follow	ving fractions :-				
	(a)	7 14	(b)	$\frac{3}{12}$	(c)	<u>14</u> 42	(d)	<u>11</u> 88
	(e)	<u>12</u> 78	(f)	<u>6</u> 84	(g)	<u>25</u> 625	(h)	<u>27</u> 126
3.	Find	d :-						
	(a)	$\frac{1}{3}$ of 66	(b)	$\frac{3}{4}$ of 48	(c)	$\frac{8}{9}$ of 27	(d)	$\frac{5}{7}$ of 616
4.	Wri	ite these as fraction	ons in	their simplest for	m :-			
	(a)	50%	(b)	25%	(c)	64%	(d)	75%
	(e)	20%	(f)	$66\frac{2}{3}\%$	(g)	33 ¹ / ₃ %	(h)	12.5%
5.	Cha	inge these fractior	is into	percentages :-				
	(a)	7 10	(b)	<u>2</u> 5	(c)	$\frac{1}{3}$	(d)	<u>17</u> 20
	(e)	24 40	(f)	<u>20</u> 30	(g)	225 1000	(h)	<u>3</u> 8
6.	Calc	culate :-						
	(a)	20% of £75		(b) 65°	% of	\$840	(4	c) 12 ¹ / ₂ % of 808 kg
7	L.	······································	.		、			

7. Kris had £120, ($\frac{3}{5}$ of his original holiday money). How much did Kris start with ?

Add/Subtract simple Fractions

1. Copy each of the following and simplify (where possible) :-

	(a) $\frac{1}{5} + \frac{3}{5}$ (c) $\frac{4}{5} - \frac{3}{5}$	(b) (f)	$\frac{2}{7} + \frac{1}{7}$ $\frac{7}{7} = \frac{5}{7}$	(c)	$\frac{5}{8} - \frac{2}{8}$ $\frac{1}{2} + \frac{3}{2}$	(d) (h)	$\frac{8}{11} - \frac{5}{11}$ $\frac{4}{11} + \frac{6}{11}$
2.	Copy each and simp	lify :-	8 8	(y)	8 8	(I)	10 ⁺ 10
	(a) $4\frac{1}{2} + 2\frac{1}{2}$ (e) $2\frac{3}{4} - 2\frac{1}{4}$	(b) (f)	$6\frac{1}{4} + 1\frac{1}{4}$ $7\frac{5}{8} - 4\frac{3}{8}$	(c) (g)	$4\frac{3}{4} + 2\frac{3}{4}$ $10\frac{7}{10} - 5\frac{3}{10}$	(d) (h)	$5\frac{7}{8} + \frac{5}{8}$ $2\frac{13}{15} - 1\frac{8}{15}$

Multiply/Divide simple Fractions

Copy and complete each calculation (simplifying where possible) :-

(a	$\frac{2}{3}$	x <u>5</u> 7	(b	$) \frac{1}{2}$	x <u>3</u> 5		(c)	<u>3</u> 4	$\times \frac{7}{8}$		(d)	<u>5</u> 8	$\times \frac{2}{3}$
(e	$) \frac{7}{8}$	$\times \frac{1}{14}$	(f	$) \frac{2}{3}$	$\times \frac{15}{16}$		(g)	<u>7</u> 10	$\frac{5}{14} \times \frac{5}{14}$		(h)	<u>5</u> 4	$\times \frac{8}{15}$
Со	py ar	nd complete	e each	calcu	Ilation	(sim	plifyin	g wh	ere p	ossible):-		
(a)	<u>3</u> 5	$\frac{3}{4}$	(b)	<u>4</u> 5	$\frac{2}{15}$		(c)	<u>1</u> 8	$\frac{1}{4}$		(d)	<u>4</u> 9	$\frac{4}{15}$
(e)	<u>7</u> 11	$\frac{7}{22}$	(f)	<u>8</u> 15	$\frac{2}{3}$		(g)	<u>11</u> 36	÷ <u>22</u> 24	<u>-</u> 	(h)	<u>10</u> 33	$\frac{1}{25}$
Со	nver	t between	Mixed	Num	ber a	nd To	p-Hea	vy F	ractio	ons			
1.	Char	nge each of	these	e top	heavy	frac	tions to	o mi	xed ni	umbers	:-		
	(a)	<u>15</u> 2		(b)	<u>16</u> 3			(c)	<u>42</u> 5		(d)	<u>91</u> 20
	(e)	<u>25</u> 4		(f)	<u>63</u> 8			(g)	<u>122</u> 11		(h)	<u>629</u> 25
2.	Cha	nge each or	f the f	ollow	ing to	a mix	ked nui	nbei	r and :	simplify	y whe	re	possible :-
	(a)	<u>30</u> 4		(b)	<u>25</u> 10			(c)	<u>131</u> 5		(d)	<u>100</u> 15
	(e)	<u>305</u> 25		(f)	<u>78</u> 8			(g)	<u>1005</u> 25		(h)	<u>100005</u> 100
3.	Cha	nge each o [.]	f the f	ollow	ing mi	xed r	number	rs to	a top	heavy	fract	ion	:-
	(a)	3 <u>1</u> 2		(b)	$4\frac{1}{3}$			(c)	7 <u>3</u> 5		(d)	10 <u>5</u> 6
	(e)	7 <u>8</u> 9		(f)	5 <u>11</u> 12			(g)	10 <u>1</u> 50	-	(h)	15 <u>8</u> 15
Pei	cent	age Calcu	lation	<u>s</u>									
1.	Write	e down the s	implest	fract	ion for	each	of the t	Follov	ving pe	rcentag	es :-		
	(a) 7	′5%	(b) 30	0%		(c)	80%		(d) 70%			
	(e) 3	$33\frac{1}{3}\%$	(f) 60	$6\frac{2}{3}\%$		(g)	40%		(h) 30%			
2.	Find	without a ca	lculator	· :-									
	(a)	50% of £9				(b)	33 <u>1</u> % o	f 360) metr	es	(c) 8	60% of 90 €
	(d)	25% of 300	р			(e) (60% of	240	р		(f) 6	6 ² / ₃ % of 121 kg
	(g)	70% of 520	cm			(h)	75% of	960) kg		(i)) 7	'5% of £440
	(j)	30% of 3100) km			(k)	75% of	£5			(I)	6	06 <u>²</u> % of 1·2 kg

3. Explain how you might (mentally) calculate 15% of £80.

4. Explain how you might (mentally) calculate $17\frac{1}{2}$ % of £80.

Angle Calculations

1. Calculate the sizes of the angles marked a, b, c, d, e and f.

2. COPY each of the following and fill in the sizes of <u>all</u> the missing angles :-

Naming Angles

Use 3 letters to name each of the angles marked :-

Angles in Quadrilaterals

- 1. Copy and complete :- "The four angles in a quadrilateral always add up to"
- 2. Calculate the values of w, x, y and z in the following quadrilaterals :-

4. Sketch each of the following quadrilaterals and fill in the sizes of the missing angles:-

1.

Interior/Exterior Angles of Polygons

- What is the name of a regular polygon which has :-V(a) 5 sides(b) 6 sides(c) 7 sides(d) 8 sides(e) 9 sides(f) 10 sides ?
- 2. The formula for finding the **interior** angles of a regular polygon, given the number of sides (*n*), is :-

interior angle = 180 - (360 ÷ n).

Use the formula to find the size of the interior angles of a regular :-

- (a) pentagon (b) nonagon (c) 20 sided polygon.
- 3. The formula shown below is used to calculate the size of the exterior angles of a regular polygon.

exterior angle = 180° - i**nterior** angle

Use the above formula to calculate the size of the exterior angle of :-

- (a) a regular pentagon.
- (b) a regular nonagon.
- (c) a regular decagon.
- 4. (a) An interior angle of a regular polygon is found to be 135°.What is the regular polygon called ?

(b) An exterior angle of a regular polygon is found to be 60°.What is the regular polygon called ?

Symmetry

1. Copy each of these shapes and mark in all the lines of symmetry.

- 2. Write down all the capital letters of the alphabet that have exactly two lines of symmetry.
- 3. Copy each figure and complete so that the dotted line is a line of symmetry.

4. Say which of these shapes have turn symmetry $(\frac{1}{2}, \frac{1}{3}, \frac{1}{4})$, and state the "order" of rotational symmetry each time.

5. Copy each shape and rotate by 180° around the dot to produce a shape which has $\frac{1}{2}$ turn symmetry.

