Higher Prelim Revision 2018

1. The vertices of a triangle are $P(-1,-1), Q(2,1)$ and $R(-6,2)$.

Find the equation of the altitude drawn from Q.
2. Simplify
a) $2 \log _{9} 2+3 \log _{9} 3-\log _{9} 36$
b) $\log _{2} 3+\log _{2} 4+\log _{2} 5-\log _{2} 30$
3. Factorise fully $2 x^{3}+5 x^{2}-4 x-3$.
4. Solve the equation $2 \sin 3 x-1=0$, for $0<x<180^{\circ}$.
5. Express $x^{2}+6 x+11$ in completed square form and state the minimum.

Hence state the maximum value of $g(x)=\frac{1}{x^{2}+6 x+11}$.
6. Find the value of θ for which the function $8 \cos \left(2 \theta-\frac{\pi}{4}\right)$ has its maximum value.
7.

The diagram shows a sketch of the function $y=f(x)$.
On separate diagrams draw the graphs of
a) $-f(x)$
b) $f(x+2)$
c) $3+f(x)$
d) $2-f(x)$

8 Express $f(x)=5 \cos x+4 \sin x$ in the form $k \cos (x-\alpha)$.
(i) State the $\mathrm{max} / \mathrm{min}$ values of f and the values of x at which the max/min occur.
(ii) Solve the equation $5 \cos x+4 \sin x=3$.
9. The equilateral triangle shown has side of length 1 unit.
Evaluate $\underline{a} .(\underline{a}+\underline{b}-\underline{c})$

10. Find p if $x+3$ is a factor of $x^{3}-x^{2}+p x+15$
11. If $f(x)=2 x+1$ and $g(x)=1-5 x$ find
a) $f(g(x))$
b) $g(f(x))$

Hence solve the equation $f(g(x))-g(f(x))=8 x+7$
12. Given that $\frac{x^{2}+4 x+10}{2 x+5}=n$, form a quadratic equation in x and hence show that if $n \leq-3$ or $n \geq 2$ then the roots will be real.
13. If $\sin A=\frac{8}{17}$ and A is acute, find the exact values of
a) $\sin 2 A$
b) $\cos 2 A$
14. In the diagram shown, find the equation of the altitude from A and the median from B.

15. The number of bacteria present in a beaker, during an experiment can be measured using the formula $N(t)=30 e^{1.25 t}$ where t is the number of hours passed.
(a) How many bacteria are in the beaker at the start of the experiment?
(b) Calculate the number of bacteria present after 5 hours.
(c) How long will it take for the number of bacteria present to treble?
16. Solve for $x>0$
(a) $\log _{a} 5+\log _{a} 2 x=\log _{a} 60$
(b) $2 \log _{a} 3+\log _{a} x=\log _{a} 36$
(c) $\frac{1}{2} \log _{x} 64+2 \log _{x} 2=5$
(d) $2 \log _{x} 6-2 / 3 \log _{x} 8=2$
17. Find where the following curves cut the x-axis.
(a) $y=\log _{4} x-2$
(b) $y=\log _{2}(x-4)-1$
18. Find where the following curves cut the y-axis.
(a) $y=\log _{2}(x+4)+1$
(b) $y=\log _{3}(x+27)+5$
19. The mass, M grams, of a radioactive isotope after a time of t years, is given by the formula $M=M_{0} e^{-k t}$ where M_{0} is the initial mass of the isotope.
In 5 years a mass of 10 grams of the isotope is reduced to 8 grams.
(a) Calculate k .
(b) Calculate the half-life of the substance i.e. the time taken for half the substance to decay.
20. If $f(x)=\frac{1}{2} x+8$ find $f^{-1}(x)$
21. If $f(x)=x^{3}-6$ find $f^{-1}(x)$ and state the domain and range of f.
22. If $f(x)=2 \sqrt{ } x+5$, state a suitable domain for f. Find the inverse function.
23. Using $R \sin (x-a)$ find the maximum values of f and g, and the corresponding values of x for $0 \leq x \leq 2 \pi$.
(a) $f(x)=1+\sqrt{2} \cos x-\sqrt{2} \sin x$
(b) $g(x)=2+\sqrt{3} \sin x-\cos x$.
24. Solve the equation $2 \cos \left(x+\frac{\pi}{6}\right)=1$, for $0<x<2 \pi$
25. The diagram shows part of the graph of a function f.

On separate diagrams sketch the graphs of
a) $f(x+3)$
b) $-f(x)$
c) $2+f(x-1)$

26. The line joining the points $(2,3)$ and $(8, k)$ is perpendicular to the line with equation $2 y-3 x+5=0$. Find the value of k.
27. Find algebraically the exact value of the expression

$$
\sin \theta^{\circ}+\sin (\theta+120)^{\circ}+\cos (\theta+150)^{\circ}
$$

28. If $P(3,4,1), Q(9,1,-5)$ and $R(11,0,-7)$, prove that P, Q and R are collinear. If $M(4,7,1)$, find the size of angle PMQ.
29. The vector $a \underline{i}+b \underline{j}+\underline{k}$ is perpendicular to both $\underline{i}-\underline{j}+\underline{k}$ and $2 \underline{i}+\underline{j}+\underline{k}$. Find the values of a and b .
30.

An aircraft flying at a constant speed in a straight flight path takes 2 minutes to fly from A to B and 1 minute to fly from B to C. Relative to a suitable set of axis A is the point $(-1,3,4)$ and B is the point $(3,1,-2)$. Find the coordinates of the point C.

