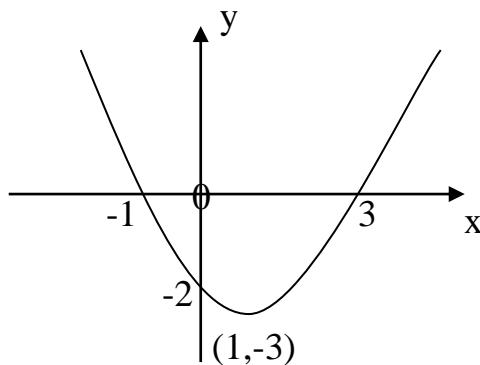


Holiday Revision

1. The vertices of a triangle are P(-1,-1), Q(2,1) and R(-6,2).
Find the equation of the altitude drawn from Q.
2. Simplify a) $2 \log_9 2 + 3 \log_9 3 - \log_9 36$
b) $\log_2 3 + \log_2 4 + \log_2 5 - \log_2 30$
3. Find y' in each example
a) $y = (2x+1)(x^2-2)$ b) $y = \frac{2x+1}{\sqrt{x}}$
4. Evaluate $\int_0^1 (2x^2 + 3)dx$.
5. Express $x^2 + 6x + 11$ in completed square form and state the minimum.
Hence state the maximum value of $g(x) = \frac{1}{x^2 + 6x + 11}$.
6. Find the equation of the tangent to the circle $x^2 + y^2 = 29$ at the point (-5,2) on the circle.
7. Find the equation of the tangent to the curve $y = x^3 - 4x - 5$ at $x = 1$.
Find the angle which this tangent makes with the positive direction of the x axis.
8. Sketch the graph of $y = 8\cos(\theta - \frac{\pi}{4})$, $0 \leq \theta \leq 2\pi$
9. Find the possible values of k for which the line $x - y = k$ is a tangent to the circle $x^2 + y^2 = 18$.
10. A function is defined by the formula $f(x) = 4x^2(x-3)$.
 - a) Write down the coordinates of the points where the curve cuts the coordinate axis.
 - b) Find the stationary values and determine their nature.
 - c) Sketch the curve $y = f(x)$.
 - d) Find the area enclosed by the curve and the x axis.

11.



The diagram shows a sketch of the function $y = f(x)$.

On separate diagrams draw the graphs of

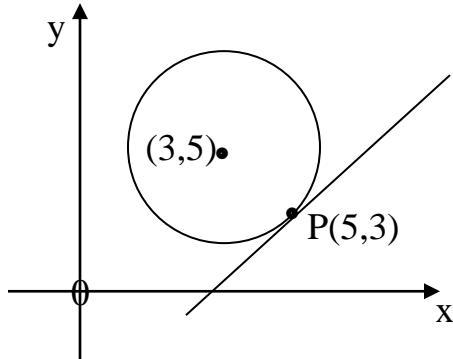
a) $-f(x)$ b) $f(x+2)$ c) $3 + f(x)$ d) $2 - f(x)$

12 Express $f(x) = 5\cos x + 4\sin x$ in the form $k\cos(x - \alpha)$.

(i) State the max/min values of f and the values of x at which the max/min occur.

13. Find the equation of the tangent to the curve $y = 4x^3 - 2$ at the point where $x = -1$.

14.



Find the equation of the tangent to the circle centre $(3,5)$ at the point $(5,3)$ on the circle.

15. The initial quantity of pollution in the loch is 25 tons, the Council remove 35% during the week and a factory discharges 8 tons into the loch each Sunday.

- i) Find the amount of pollution after 1, 2, 3 and 4 weeks
- ii) Establish a recurrence relation and hence find the long term state of the loch.

16. If $f(x) = 2x + 1$ and $g(x) = 1 - 5x$ find

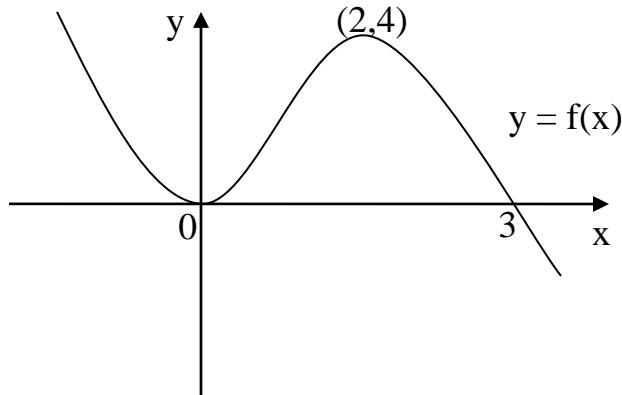
- a) $f(g(x))$
- b) $g(f(x))$

Hence solve the equation $f(g(x)) - g(f(x)) = 8x + 7$

17. Evaluate $\int_{-1}^3 (x^2 + 2) dx$ and draw a sketch to illustrate the area represented by this integral.

18. For all points on the curve $y = f(x)$, $f'(x) = 1 - 4x$.
If the curve passes through the point $(1, -1)$, find the equation of the curve.

18.



The diagram shows a sketch of a cubic function f with stationary values at the origin and $(2, 4)$. Sketch the graph of the derived function.

20. Given that $\frac{x^2 + 4x + 10}{2x + 5} = n$, form a quadratic equation in x and hence show that if $n \leq -3$ or $n \geq 2$ then the roots will be real.

21. If $y = \frac{(x+2)(x+1)}{\sqrt{x}}$, find y' when $x = 4$.

22. For what values of x is the function $y = \frac{1}{3}x^3 - 2x^2 - 5x - 4$ increasing.

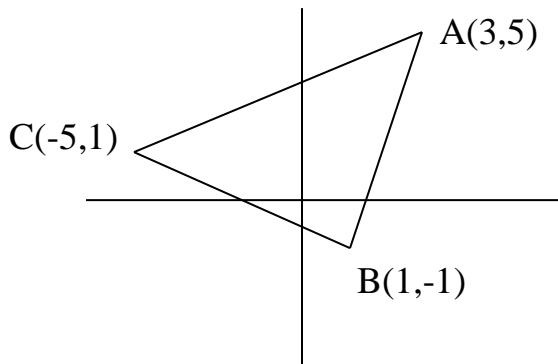
23. If $\sin A = \frac{8}{17}$ and A is acute, find the exact values of
 a) $\sin 2A$ b) $\cos 2A$

24. Show that the point $(3, -1)$ lies on the circle with equation

$$x^2 + y^2 - 4x + 6y + 8 = 0$$

and find the equation of the tangent to the circle at this point.

25. In the diagram shown, find the equation of the altitude from A and the median from B .



26. The number of bacteria present in a beaker, during an experiment can be measured using the formula $N(t) = 30e^{1.25t}$ where t is the number of hours passed.

- (a) How many bacteria are in the beaker at the start of the experiment?
- (b) Calculate the number of bacteria present after 5 hours.
- (c) How long will it take for the number of bacteria present to treble?

27. Solve for $x > 0$

(a) $\log_a 5 + \log_a 2x = \log_a 60$ (b) $2\log_a 3 + \log_a x = \log_a 36$
(c) $\frac{1}{2}\log_x 64 + 2\log_x 2 = 5$ (d) $2\log_x 6 - \frac{2}{3}\log_x 8 = 2$

28. Find where the following curves cut the x -axis.

(a) $y = \log_4 x - 2$ (b) $y = \log_2 (x - 4) - 1$

29. Find where the following curves cut the y -axis.

(a) $y = \log_2 (x + 4) + 1$ (b) $y = \log_3 (x + 27) + 5$

30. The mass, M grams, of a radioactive isotope after a time of t years, is given by the formula $M = M_0 e^{-kt}$ where M_0 is the initial mass of the isotope.

In 5 years a mass of 10 grams of the isotope is reduced to 8 grams.

(a) Calculate k .

(b) Calculate the half-life of the substance i.e. the time taken for half the substance to decay.

31. If $f(x) = \frac{1}{2}x + 8$ find $f^{-1}(x)$

32. If $f(x) = x^3 - 6$ find $f^{-1}(x)$ and state the domain and range of f .

33. If $f(x) = 2\sqrt{x} + 5$, state a suitable domain for f . Find the inverse function.

34. Using $R\sin(x - a)$ find the maximum values of f and g , and the corresponding values of x for $0 \leq x \leq 2\pi$.

(a) $f(x) = 1 + \sqrt{2}\cos x - \sqrt{2}\sin x$ (b) $g(x) = 2 + \sqrt{3}\sin x - \cos x$.