X100/301

NATIONAL
QUALIFICATIONS 2007

TUESDAY, 15 MAY
9.00 AM - 10.10 AM

MATHEMATICS HIGHER

Units 1, 2 and 3
Paper 1
(Non-calculator)

Read Carefully

1 Calculators may NOT be used in this paper.

2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta, \text { where } \theta \text { is the angle between } \boldsymbol{a} \text { and } \boldsymbol{b}
$$

$$
\text { or } \quad \boldsymbol{a} . \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \text {. }
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \overline{\sin } \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

ALL questions should be attempted.

1. Find the equation of the line through the point $(-1,4)$ which is parallel to the line with equation $3 x-y+2=0$.
2. Relative to a suitable coordinate system A and B are the points $(-2,1,-1)$ and $(1,3,2)$ respectively.
A, B and C are collinear points and C is positioned such that $\mathrm{BC}=2 \mathrm{AB}$.

Find the coordinates of C .

3. Functions f and g, defined on suitable domains, are given by $f(x)=x^{2}+1$ and $g(x)=1-2 x$.
Find:
(a) $g(f(x))$;
(b) $g(g(x))$.
4. Find the range of values of k such that the equation $k x^{2}-x-1=0$ has no real roots.
5. The large circle has equation $x^{2}+y^{2}-14 x-16 y+77=0$.

Three congruent circles with centres A, B and C are drawn inside the large circle with the centres lying on a line parallel to the x-axis.

This pattern is continued, as shown in the diagram.

Find the equation of the circle with centre D.

6. Solve the equation $\sin 2 x^{\circ}=6 \cos x^{\circ}$ for $0 \leq x \leq 360$.
7. A sequence is defined by the recurrence relation

$$
u_{n+1}=\frac{1}{4} u_{n}+16, u_{0}=0 .
$$

(a) Calculate the values of u_{1}, u_{2} and u_{3}.

Four terms of this sequence, u_{1}, u_{2}, u_{3} and u_{4} are plotted as shown in the graph.
As $n \rightarrow \infty$, the points on the graph approach the line $u_{n}=k$, where k is the limit of this sequence.
(b) (i) Give a reason why this sequence has a limit.

(ii) Find the exact value of k.
8. The diagram shows a sketch of the graph of $y=x^{3}-4 x^{2}+x+6$.
(a) Show that the graph cuts the x-axis at $(3,0)$.
(b) Hence or otherwise find the coordinates of A.

(c) Find the shaded area.
9. A function f is defined by the formula $f(x)=3 x-x^{3}$.
(a) Find the exact values where the graph of $y=f(x)$ meets the x - and y-axes.
(b) Find the coordinates of the stationary points of the function and determine their nature.
(c) Sketch the graph of $y=f(x)$.
10. Given that $y=\sqrt{3 x^{2}+2}$, find $\frac{d y}{d x}$.
11. (a) Express $f(x)=\sqrt{3} \cos x+\sin x$ in the form $k \cos (x-a)$, where $k>0$ and $0<a<\frac{\pi}{2}$.
(b) Hence or otherwise sketch the graph of $y=f(x)$ in the interval $0 \leq x \leq 2 \pi$.

