2006 Mathematics

Higher - Paper 2

Finalised Marking Instructions

© The Scottish Qualifications Authority 2006

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

1. Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than marks deducted for what is wrong.
2. Award one mark for each 'bullet' point. Each error should be underlined in RED at the point in the working where it first occurs, and not at any subsequent stage of the working.
3. The working subsequent to an error must be followed through by the marker with possible full marks for the subsequent working, provided that the difficulty involved is approximately similar. Where, subsequent to an error, the working is eased, a deduction(s) of mark(s) should be made.
This may happen where a question is divided into parts. In fact, failure to even answer an earlier section does not preclude a candidate from assuming the result of that section and obtaining full marks for a later section.
4. Correct working should be ticked $(\sqrt{ })$. This is essential for later stages of the SQA procedures. Where working subsequent to an error(s) is correct and scores marks, it should be marked with a crossed tick (\boldsymbol{X} or $\mathbf{X} \sqrt{ }$). In appropriate cases attention may be directed to work which is not quite correct (e.g. bad form) but which has not been penalised, by underlining with a dotted or wavy line.
Work which is correct but inadequate to score any marks should be corrected with a double cross tick
5. - The total mark for each section of a question should be entered in red in the outer right hand margin, opposite the end of the working concerned.

- Only the mark should be written, not a fraction of the possible marks.
- These marks should correspond to those on the question paper and these instructions.

6. It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked. Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer.
7. As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Accept answers arrived at by inspection or mentally where it is possible for the answer so to have been obtained. Situations where you may accept such working will normally be indicated in the marking instructions.
8. Do not penalise:

- working subsequent to a correct answer
- legitimate variations in numerical answers
- correct working in the "wrong" part of a question
- omission of units
- bad form

9. No piece of work should be scored through without careful checking - even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme - answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the mark(s).
10. If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.
11. In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referal to the P.A. Please see the general instructions for P.A. referrals.
12. No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.

13 Transcription errors: In general, as a consequence of a transcription error, candidates lose the opportunity of gaining either the first ic mark or the first pr mark.

14 Casual errors: In general, as a consequence of a casual error, candidates lose the opportunity of gaining the appropriate ic mark or pr mark.

15 Do not write any comments on the scripts. A revised summary of acceptable notation is given on page 4.

16 Working that has been crossed out by the candidate cannot receive any credit. If you feel that a candidate has been disadvantaged by this action, make a P.A. Referral.

17 Throughout this paper, unless specifically mentioned, a correct answer with no working receives no credit.

Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:

1 Tick correct working.
2 Put a mark in the outer right-hand margin to match the marks allocations on the question paper.
3 Do not write marks as fractions.
4 Put each mark at the end of the candidate's response to the question.
5 Follow through errors to see if candidates can score marks subsequent to the error.
6 Do not write any comments on the scripts.

Higher Mathematics : A Guide to Standard Signs and Abbreviations

Remember - No comments on the scripts. Please use the following and nothing else.

Signs

\checkmark The tick. You are not expected to tick every line but of course you must check through the whole of a response.
\times The cross and underline. Underline an error and place a cross at the end of the line.
\times The tick-cross. Use this to show correct work where you are following through subsequent to an error.

Bullets showing where marks are being allotted may be shown on scripts

Remember - No comments on the scripts. No abreviations. No new signs.
Please use the above and nothing else.

All of these are to help us be more consistent and accurate.

Note: There is no such thing as a transcription error, a trivial error, a casual error or an insignificant error. These are all mistakes and as a consequence a mark is lost.

Page 5 lists the syllabus coding for each topic. This information is given in the legend underneath the question. The calculator classification is CN(calculator neutral), CR(calculator required) and NC (non-calculator).

1	2		UNIT 1	1	2		UNIT 2	1	2		UNIT 3 Year	
		A1	determine range/domain			A15	use the general equation of a parabola			A28	use the laws of logs to simplify/find equiv. expression	
		A2	recognise general features of graphs:poly, exp,log			A16	solve a quadratic inequality			A29	sketch associated graphs	
		Аз	sketch and annotate related functions			A17	find nature of roots of a quadratic			A30	solve equs of the form $A=B e^{k t}$ for A, B, k or t	\%
		A4	obtain a formula for composite function			A18	given nature of roots, find a condition on coeffs			A31	solve equs of the form $\log _{b}(a)=c$ for a, b or c	
		A5	complete the square			A19	form an equation with given roots			A32	solve equations involving logarithms	
		A6	interpret equations and expressions			A20	apply A15-A19 to solve problems			АЗз	use relationships of the form $y=a x^{n}$ or $y=a b^{x}$	
		A7	determine function(poly, exp,log) from graph \mathcal{B} vv							A34	apply A28-A33 to problems	
		A8	sketch/annotate graph given critical features									
		A9	interpret loci such as st.lines, para,poly, circle									
		A10	use the notation u_{n} for the nth term			A21	use Rem Th. For values, factors, roots			G16	calculate the length of a vector	
		A11	evaluate successive terms of a $R R$			A22	solve cubic and quartic equations			G17	calculate the 3rd given two from A, B and vector $A B$	
		A12	decide when $R R$ has limit/interpret limit			A23	find intersection of line and polynomial			G18	use unit vectors	
		A13	evaluate limit			A24	find if line is tangent to polynomial			G19	use: if $\boldsymbol{u}, \boldsymbol{v}$ are parallel then $\boldsymbol{v}=k \boldsymbol{u}$	
		A14	apply A10-A14 to problems			A25	find intersection of two polynomials			G20	add, subtract, find scalar mult. of vectors	
						A26	confiirm and improve on approx roots			G21	simplify vector pathways	
						A27	apply A21-A26 to problems			G22	interpret 2D sketches of 3D situations	
										G23	find if 3 points in space are collinear	
										G24	find ratio which one point divides two others	
		G1	use the distance formula			G9	find C / R of a circle from its equation/other data			G25	given a ratio, find/interpret 3rd point/vector	
		G2	find gradient from 2 pts,/angle/equ. of line			G10	find the equation of a circle			G26	calculate the scalar product	
		G3	find equation of a line			G11	find equation of a tangent to a circle			G27	use: if $\boldsymbol{u}, \boldsymbol{v}$ are perpendicular then $\boldsymbol{v} \cdot \boldsymbol{u}=\mathbf{0}$	
		G4	interpret all equations of a line			G12	find intersection of line \mathcal{E}^{3} circle			G28	calculate the angle between two vectors	
		G5	use property of perpendicular lines			G13	find if/when line is tangent to circle			G29	use the distributive law	
		G6	calculate mid-point			G14	find if two circles touch			G30	apply G16-G29 to problems eg geometry probs.	
		G7	find equation of median, altitude,perp. bisector			G15	apply G9-G14 to problems					
		G8	apply G1-G7 to problems eg intersect., concur.,collin.									
		C1	differentiate sums, differences			C12	find integrals of $p x^{n}$ and sums/diffs			C20	differentiate psin $(a x+b), p \cos (a x+b)$	
		C2	differentiate negative \mathcal{E}° fractional powers			C13	integrate with negative \mathcal{E}^{8} fractional powers			C21	differentiate using the chain rule	
		C3	express in differentiable form and differentiate			C14	express in integrable form and integrate			C22	integrate $(a x+b)^{n}$	
		C4	find gradient at point on curve \mathcal{B} vv			C15	evaluate definite integrals			C23	integrate $p \sin (a x+b), p \cos (a x+b)$	
		C5	find equation of tangent to a polynomial/trig curve			C16	find area between curve and x-axis			C24	apply C20-C23 to problems	
		c6	find rate of change			C17	find area between two curves					
		C7	find when curve strictly increasing etc			C18	solve differential equations(variables separable)					
		C8	find stationary points/values			C19	apply C12-C18 to problems					
		C9	determinenature of stationary points									
		C10	sketch curvegiven the equation									
		C11	apply C1-C10 to problems eg optimise, greatest/least									
		T1	use gen. features of graphs of $f(x)=k \sin (a x+b)$,			T7	solve linear ${ }^{6}$ quadratic equations in radians			T12	solve sim.equs of form $k \cos (a)=p, k \sin (a)=q$	
			$f(x)=k \cos (a x+b)$; identify period/amplitude			T8	apply compound and double angle (c \& da) formulae			T13	express pcos $(x)+q \sin (x)$ in form $k \cos (x \pm a)$ etc	
		T2	use radians inc conversion from degrees $\mathcal{B} \mathrm{vv}$				in numerical $\mathcal{B}^{\text {literal cases }}$			T14	find max/min/zeros of $\operatorname{pcos}(x)+q \sin (x)$	
		T3	know and use exact values			т9	apply c \mathcal{E} da formulae in geometrical cases			T15	sketch graph of $y=p \cos (x)+q \sin (x)$	
		T4	recognise form of trig. function from graph			T10	use c \mathcal{B} da formulaewhen solving equations			T16	solve equ of the form $y=p \cos (r x)+q \sin (r x)$	
		T5	interpret trig. equations and expressions			T11	apply T\%-T10 to problems			T17	apply T12-T16 to problems	
		т6	apply T1-T5 to problems									

$1 \quad \mathrm{PQRS}$ is a parallelogram. P is the point $(2,0), \mathrm{S}$ is $(4,6)$ and Q lies on the x-axis, as shown.
The diagonal QS is perpendicular to the side PS.
(a) Show that the equation of QS is $x+3 y=22$.
(b) Hence find the coordinates of Q and R .

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
1	a, b	4,2	C	G 8	CN	$06 / 05$

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ pr find gradient from two points
${ }^{\bullet}$ 2 ss use $m_{1} m_{2}=-1$
- ${ }^{3}$ ic state equation of the line
- ic completes proof
- 5 ic interpret diagram
$\bullet{ }^{6}$ ic interpret diagram

Notes

In (a)
1 In the Primary method, ${ }^{3}$ is only available if an attempt has been made to find and use a perpendicular gradient.

2 In the Primary method and the Alt. method 1, \bullet^{4} is only available for reaching the required equation.

3 To gain $\cdot{ }^{4}$, some evidence of completion needs to be shown

$$
\text { e.g. } \begin{aligned}
y-6 & =-\frac{1}{3}(x-4) \\
3(y-6) & =-(x-4) \\
x+3 y & =22
\end{aligned}
$$

Primary Method : Give 1 mark for each \cdot

- $m_{\mathrm{PS}}=3$
- $m_{Q S}=-\frac{1}{3}$
- ${ }^{3} y-6=-\frac{1}{3}(x-4)$
- ${ }^{4}$ completes proof 4 marks
- ${ }^{5} \quad Q=(22,0)$
${ }^{\bullet} \quad R=(24,6) \quad 2$ marks

Alternative Method 1

- $\quad m_{\mathrm{PS}}=3$
- $m_{Q S}=-\frac{1}{3}$

$$
y=-\frac{1}{3} x+c
$$

- ${ }^{3} 6=-\frac{1}{3} \times 4+c$
- ${ }^{4}$ completes proof
- ${ }^{5} \quad Q=(22,0)$
- ${ }^{6} \quad R=(24,6)$

4 Sometimes candidates manage to find R first. Provided the coordinates of R are of the form (?, 6), only then is . 6 available as a follow through.
$5 \quad .{ }^{5}$ and $\cdot{ }^{6}$ are available to candidates who use their own erroneous equation for QS.

General Notes applicable throughout the marking scheme

There are many instances when follow throughs come into play and these will not always be highlighted for you. The following example is a reminder of what you have to look out for when you are marking.

example

At the ${ }^{5}$ stage a candidate may switch the coordinates round so we have

$$
\begin{array}{llll}
\bullet & X & Q(0,22) & \\
\bullet & X \sqrt{ } & R(2,28) & \text { repeated error }
\end{array}
$$

so the candidate loses ${ }^{.5}$ for switching the coordinates but gains . 6 as a consequence of following through.
Any error can be followed through and the subsequent marks awarded provided the working has not been eased. Any deviation from this will be noted in the marking scheme.

Alternative Method 2

$$
\text { Let } Q=(q, 0)
$$

- $\quad(q-2)^{2}=2^{2}+6^{2}+(q-4)^{2}+6^{2}$
- ${ }^{2} \quad q=22$
$\bullet{ }^{3} \quad Q=(22,0)$ and $R=(24,6)$
- $m_{Q S}=-\frac{1}{3}$
- $\quad y-0=-\frac{1}{3}(x-22)$
${ }^{6} \quad$ leading to $3 y+x=22$
N.B.

The coordinates of Q can also be arrived at by right-angled trig. Use the alt. method 2 marking scheme with ${ }^{1}$ replaced by appropriate trig. work.
The only acceptable value for q is 22 .

2 Find the value of k such that the equation $k x^{2}+k x+6=0, k \neq 0$, has equal roots.

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
2		4	C	A18	CN	$06 / n e w$

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ SS know to use "discriminant $=0 "$
- ${ }^{2}$ ic interpret a, b, c
${ }^{\bullet}{ }^{3}$ pr substitute \& factorise
- ${ }^{4}$ ic interpret solution

Notes

1 The evidence for ${ }^{.1}$ and/or ${ }^{2}$ may not appear until the working immediately preceding the evidence for ${ }^{3}$. i.e. a candidate may simply start

$$
\begin{array}{ll}
\sqrt{ } \bullet^{1}, \sqrt{ } \bullet^{2} & k^{2}-4 \times k \times 6=0 \\
\sqrt{ } \bullet & k(k-24)
\end{array}
$$

or

$$
\begin{array}{ll}
\sqrt{ } \bullet^{2} & k^{2}-4 \times k \times 6 \\
\sqrt{ } \bullet \frac{1}{}, ~ & k(k-24)=0
\end{array}
$$

2 The "= 0" has to appear at least once, at the ${ }^{1}{ }^{1}$ stage or at the $\cdot{ }^{3}$ stage.

3 In the Primary method, candidates who do not deal with the root $k=0$ cannot obtain ${ }^{4}$.
[see Common Errors 1 and 2]
Minimum evidence for ${ }^{4}$ would be scoring out " $k=0$ " or " $k=24$ " underlined.

4 Some candidates may start with the quadratic formula. Apply the marking scheme to the part underneath the square root sign.

5 The use of any expression masquerading as the discriminant can only gain ${ }^{2}$ at most.

Primary Method : Give 1 mark for each •

- ${ }^{1} \quad b^{2}-4 a c "=0$
- ${ }^{2} \quad a=k, b=k, c=6$
$\bullet^{3} \quad k(k-24)$
-4 $\left[\begin{array}{ccc}k=0 & \text { and } \quad k=24 \\ \therefore & k=24 & \end{array} \quad 4\right.$ marks

Alternative Method 1 (completing the square)

$\bullet^{1} \quad\left(x+\frac{1}{2}\right)^{2}+\ldots \ldots$.

- $2 \quad\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}+\frac{6}{k}=0$
- equal roots $\Rightarrow-\frac{1}{4}+\frac{6}{k}=0$
- ${ }^{4} \quad k=24$

Acceptable alternative for ${ }^{4}$

$$
\begin{array}{lll}
\sqrt{ } & \bullet{ }^{1} & " b^{2}-4 a c "=0 \\
\sqrt{ } & \bullet{ }^{2} & a=k, b=k, c=6 \\
\sqrt{ } & \bullet{ }^{3} & k(k-24) \\
\sqrt{ } & \bullet{ }^{4} & k \neq 0 \text { or } 24
\end{array}
$$

Common Error 1 at the $\cdot \mathbf{4}$ stage

$$
\begin{array}{lll}
\sqrt{ } & \bullet^{1} & " b^{2}-4 a c "=0 \\
\sqrt{ } & \bullet^{2} & a=k, b=k, c=6 \\
\sqrt{ } & \bullet^{3} & k(k-24) \\
X & \bullet 4 & k=0 \text { or } 24
\end{array}
$$

Common Error 2 at the $\cdot 4$ stage

$$
\begin{array}{lll}
\sqrt{ } & \bullet^{1} & " b^{2}-4 a c "=0 \\
\sqrt{ } & \bullet^{2} & a=k, b=k, c=6 \\
\sqrt{ } & \bullet^{3} & k(k-24) \\
X & \bullet{ }^{4} & k=24
\end{array}
$$

Common Error 3 Division by \mathbf{k}

$\sqrt{ }$	\bullet^{1}	$" b^{2}-4 a c "=0$
$\sqrt{ }$	\bullet^{2}	$a=k, b=k, c=6$
X	\bullet^{3}	$k^{2}-24 k=0$
		$k^{2}=24 k$
X	$\bullet 4$	$k=24$

3 The parabola with equation $y=x^{2}-14 x+53$ has a tangent at the point $\mathrm{P}(8,5)$.
(a) Find the equation of this tangent.
(b) Show that the tangent found in (a) is also a tangent to the parabola with equation $y=-x^{2}+10 x-27$ and find the coordinates of the point of contact Q .

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
3	a	4	C	C5	CN	$06 / 26$
	b	5	C	A24	CN	

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME
${ }^{-1}$ ss know to differentiate

- ${ }^{2}$ pr differentiate
${ }{ }^{3}$ pr evaluate gradient
- ${ }^{4}$ ic state equation of tangent
\bullet - ss arrange in standard form
- ${ }^{6}$ sS substitute into quadratic
${ }^{-7}$ pr process
- 8 ic factorise \& interpret
\bullet - ic state coordinates

Primary Method : Give 1 mark for each .

- $\frac{d y}{d x}=$
$\bullet^{2} \quad 2 x-14$
$\bullet^{3} \quad m=2 \quad$ stated or implied by $\cdot 4$
- $4-5=2(x-8) \quad 4$ marks
- $\quad y=2 x-11$
- ${ }^{6} \quad 2 x-11=-x^{2}+10 x-27$
${ }^{-7} x^{2}-8 x+16=0$
- $\quad(x-4)^{2}=0 \Rightarrow$ equal roots so tgt
- ${ }^{9} \mathrm{Q}=(4,-3)$

5 marks

Notes

In (a)
$1 .{ }^{4}$ is only available if an attempt has been made to find the gradient from differentiation.

In (b)
$2 .{ }^{6}$ is only available for a numerical value of m.
3 An " $=0$ " must occur somewhere in the working between \cdot^{7} and \cdot^{8}.
$4 .{ }^{8}$ is awarded for drawing a conclusion from the candidate's quadratic equation.

5 Candidates may substitute the equation of the parabola into the equation of the line. This is a perfectly acceptable approach.

Common Error 1

$$
\begin{array}{lll}
\hline \sqrt{ } & \bullet & \frac{d y}{d x}= \\
\sqrt{ } & \bullet \bullet^{2} & 2 x-14 \\
X & \bullet{ }^{3} & 2 x-14=0 \text { so } x=7 \text { so } m=7 \\
X & \bullet{ }^{4} & y-5=7(x-8) \\
X \sqrt{ } & \bullet & y=7 x-51 \\
X \sqrt{ } & \bullet & 7 x-51=-x^{2}+10 x-27 \\
X \sqrt{ } & \bullet^{7} & x^{2}-3 x-24=0 \\
X \sqrt{ } & \bullet{ }^{8} & b^{2}-4 a c=105 \Rightarrow \text { line is not tgt } \\
X & \bullet 9 & -- \\
\text { so award } 6 & \text { marks }
\end{array}
$$

Alternative Marking 1 [Marks 8]

$\bullet^{8} b^{2}-4 a c=64-4 \times 16=0 \Rightarrow$ line is a tangent

Alternative Method 1 for (b)

-5 $\quad 2 x=y+11$
${ }^{6} \quad 4 y=-\left(y^{2}+22 y+121\right)+20 y+220-108$

- $y^{2}+6 x+9=0$
- $\quad(y+3)^{2}=0 \Rightarrow$ equal roots so tgt
$\bullet{ }^{9} \quad \mathrm{Q}=(4,-3)$

Alternative Method 2 for (b)

- 5 Find the equ. of the tgt to 2 nd curve with grad. 2
stated or implied by -6
- ${ }^{6} \quad-2 x+10=2$
- $\quad \mathrm{Q}=(4,-3)$
- $\quad y-(-3)=2(x-4)$
$\bullet{ }^{9} \quad y=2 x-11$ which is the same equ. as (a)
stated explicitly

4 The circles with equations $(x-3)^{2}+(y-4)^{2}=25$ and $x^{2}+y^{2}-k x-8 y-2 k=0$.
have the same centre. Determine the radius of the larger circle.

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
4		5	C	G9	CN	$06 / 55$

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ ic state centre of circle 1
- ${ }^{2}$ ss equate x-coordinates, find k.
\bullet - ic find radius of circle 1
- ${ }^{4}$ ic substitute into the radius formula
${ }^{5}$ ic process radius formula and compare.

Notes

$1 \cdot{ }^{2}$ requires no justification.
2 Evidence for ${ }^{.}$may appear for the first time at the $\cdot{ }^{5}$ stage.
3 If $R_{1}=5$ is clearly stated at the $\cdot{ }^{3}$ stage, then it does not have to appear at the $\cdot{ }^{5}$ stage for the conclusion to be drawn.

4 For any formula masquerading as the radius formula (e.g. see Common Error 2), \cdot^{4} and ${ }^{5}$ are NOT available.

Primary Method : Give 1 mark for each -

- $C_{1}=(3,4)$
- ${ }^{2} \quad k=6$
- ${ }^{3} \quad R_{1}=5$
- $R_{2}=\sqrt{(-3)^{2}+(-4)^{2}-(-12)}$ or equivalent
$\bullet^{5} \sqrt{37}>5$ or " 2 nd circle"

Alternative Method 1

- $x^{2}+y^{2}-6 x-8 y+25=25$
- ${ }^{2} \quad k=6$
- $\quad R_{1}=5$
- $\quad R_{2}=\sqrt{(-3)^{2}+(-4)^{2}-(-12)}$ or equivalent
- $\sqrt{37}>5$ or " 2 nd circle"

Common Error 1

$$
\begin{array}{lll}
\sqrt{ } & \bullet \bullet^{1} & C_{1}=(3,4) \\
\sqrt{ } & \bullet{ }^{2} & k=6 \\
\sqrt{ } & \bullet \bullet^{3} & R_{1}=5 \\
X & \bullet{ }^{4} & R_{2}=\sqrt{(-3)^{2}+(-4)^{2}-12} \\
X \sqrt{ } & \bullet 5 & \sqrt{13}<5 \text { or } \text { "1st circle" }
\end{array}
$$

Common Error 2

$$
\begin{array}{lll}
\sqrt{ } & \bullet & C_{1}=(3,4) \\
\sqrt{ } & \bullet{ }^{2} & k=6 \\
\sqrt{ } & \bullet & R_{1}=5 \\
X & \bullet{ }^{4} & R_{2}=\sqrt{(-3)^{2}+(-4)^{2}+(12)^{2}} \\
X & \bullet{ }^{5} & 13>5 \text { or } \text { " } 2 \text { nd circle " }
\end{array}
$$

5 The curve $y=f(x)$ is such that $\frac{d y}{d x}=4 x-6 x^{2}$. The curve passes through the point $(-1,9)$. Express y in terms of x.

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
5		4	C/B	C18	CN	$06 / 37$

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ ss know to integrate
- ${ }^{2}$ pr integrate
-3 ic substitute values
${ }^{\bullet 4}$ pr process constant
Primary Method : Give 1 mark for each •
$\begin{array}{lll}\bullet & y=\int \ldots & \\ \bullet^{2} & \frac{4}{2} x^{2}-\frac{6}{3} x^{3} & \\ \bullet^{3} & 9=2(-1)^{2}-2(-1)^{3}+c & \\ \bullet & y=2 x^{2}-2 x^{3}+5 & \text { stated or implied by •2 } \\ & \end{array}$

Common Error 1 Missing "equation"

Notes

1 The equation " $y=\ldots \ldots$. ." must appear somewhere in
the solution.

$$
\begin{array}{lll}
\sqrt{ } & \bullet \bullet^{1} & y=\int \ldots \\
\sqrt{ } & \bullet^{2} & \frac{4}{2} x^{2}-\frac{6}{3} x^{3} \\
\sqrt{ } & \bullet^{3} & 9=2(-1)^{2}-2(-1)^{3}+c \\
X & \bullet \bullet^{4} & c=5 \\
\text { award } 3 & \text { marks }
\end{array}
$$

Common Error 2 : Not using (-1, 9)

$$
\begin{array}{lll}
\sqrt{ } & \bullet & y=\int . . \\
\sqrt{ } & \bullet & \frac{4}{2} x^{2}-\frac{6}{3} x^{3} \\
X & \bullet & 2(-1)^{2}-2(-1)^{3}+c=0 \\
X & \bullet & y=2 x^{2}-2 x^{3}-4 \\
\text { award } 2 & \text { marks }
\end{array}
$$

Alternative Marking

$$
\begin{array}{ll}
\bullet 1 & y=\int \ldots \\
\bullet & \frac{4}{2} x^{2}-\frac{6}{3} x^{3} \\
\bullet & {\left[\begin{array}{l}
y=2 x^{2}-2 x^{3}+c \\
\text { and } \\
9=2(-1)^{2}-2(-1)^{3}+c \\
\bullet
\end{array}\right.} \\
\qquad=5
\end{array}
$$

$6 \quad \mathrm{P}$ is the point $(-1,2,-1)$ and Q is $(3,2,-4)$.
(a) Write down $\overrightarrow{\mathrm{PQ}}$ in component form.
(b) Calculate the length of PQ .
(c) Find the components of a unit vector which is parallel to $\overrightarrow{\mathrm{PQ}}$.

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
6	a	1	C	G17	CN	$06 / 59$
	b	1	C	G16		
	c	1	B	G18		

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ ic state vector components
$\bullet 2$ pr find the length of a vector
$\bullet 3$ ic state unit vector
Primary Method : Give 1 mark for each •
- $\overrightarrow{\mathrm{PQ}}=\left(\begin{array}{c}4 \\ 0 \\ -3\end{array}\right)$

1 mark

- $\quad|\overrightarrow{\mathrm{PQ}}|=5$

1 mark
$\bullet^{3}\left(\begin{array}{c}\frac{4}{5} \\ 0 \\ -\frac{3}{5}\end{array}\right)$
1 mark

Note

In (a)
1 It is perfectly acceptable to write the components as a row
vector eg $\overrightarrow{\mathrm{PQ}}=\left(\begin{array}{lll}4 & 0 & -3\end{array}\right)$.
Treat $\overrightarrow{\mathrm{PQ}}=(4,0,-3)$ as bad form (i.e. not penalised).
In (b)
$2 .{ }^{2}$ is not awarded for an unsimplified $\sqrt{25}$.

3 Beware of misappropriate use of the scalar product where, by coincidence, $\boldsymbol{p} . \boldsymbol{q}=5$.
$\ln (\mathrm{c})$
4 Accept $\frac{1}{5}\left(\begin{array}{c}4 \\ 0 \\ -3\end{array}\right)$ for ${ }^{3}$.
$7 \quad$ The diagram shows the graph of a function $y=f(x)$. Copy the diagram and on it sketch the graphs of
(a) $y=f(x-4)$
(b) $y=2+f(x-4)$

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
7	a	2	C	A3	CN	06/new
	b	2	C	A3		

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ic know translate parallel to x-axis, +ve dir.
- ${ }^{2}$ ic annotate points
$\bullet 3$ ic know translate parallel to y-axis, + ve dir.
- ${ }^{4}$ ic annotate points

Notes

For (a)
1 A translation of $\binom{-4}{0}$ earns a maximum of 1 mark with both points clearly annotated and $f(x)$ retaining its shape.

2 Any other translation gains no marks.
In the Primary method
For (b)
$3 \quad{ }^{3}$ and ${ }^{4}$ are only available for applying the translation to the resultant graph from (a).
4 A translation of $\binom{0}{-2}$ earns a maximum of 1 mark with both points clearly annotated and the resultant graph from (a) retaining its shape.

5 Any other translation gains no marks.
In the Alternative method
For (b)
6 A translation of $\binom{4}{-2},\binom{-4}{2}$ or $\binom{-4}{-2}$ applied to the original graph earns a maximum of 1 mark with both points clearly annotated and the resultant graph retaining its original shape.

7 Any other translation gains no marks.
In either method
For (a) and (b)
8 For the annotated points, accept a superimposed grid or clearly labelled axes.

9 A candidate may choose to use two separate diagrams. This is acceptable.

8 The diagram shows a right-angled triangle with height 1 unit, base 2 units and an angle of a° at A.
(a) Find the exact values of
(i) $\sin a^{\circ}$

(ii) $\sin 2 a^{\circ}$.
(b) By expressing $\sin 3 a^{\circ}$ as $\sin (2 a+a)^{\circ}$, find the exact value of $\sin 3 a^{\circ}$.

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
8	a	4	C	T9	CN	$06 / 44$
	b	4	B	T8	CN	

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ ic interpret diagram for $\sin \left(\mathrm{a}^{\circ}\right)$
$\bullet{ }^{2}$ ss use double angle formula for $\sin (2 \mathrm{~A})$
${ }^{3}$ ic interpret diagram for $\cos \left(a^{\circ}\right)$
- ${ }^{4}$ pr substitute and complete
${ }^{-5}$ ss use compound angle formula
${ }^{\bullet}{ }^{6}$ pr use double angle formula for $\cos (2 \mathrm{~A})$
- ${ }^{7}$ ic substitute
- ${ }^{8}$ pr complete

Note

1 Calculating approximate angles using arcsin and arccos gains no credit.

Primary Method : Give 1 mark for each -

- $\quad \sin \left(a^{\circ}\right)=\frac{1}{\sqrt{5}}$
$\bullet^{2} \quad \sin \left(2 a^{\circ}\right)=2 \sin \left(a^{\circ}\right) \cos \left(a^{\circ}\right)$
- $\quad \cos \left(a^{\circ}\right)=\frac{2}{\sqrt{5}}$
- ${ }^{4} \quad \sin \left(2 a^{\circ}\right)=\frac{4}{5}$

4 marks
$\bullet^{5} \sin \left(3 a^{\circ}\right)=\sin \left(2 a^{\circ}\right) \cos \left(a^{\circ}\right)+\cos \left(2 a^{\circ}\right) \sin \left(a^{\circ}\right)$

- ${ }^{6} \quad \cos \left(2 a^{\circ}\right)=\frac{3}{5}$
$\bullet^{7} \quad \sin \left(3 a^{\circ}\right)=\frac{4}{5} \cdot \frac{2}{\sqrt{5}}+\frac{3}{5} \cdot \frac{1}{\sqrt{5}}$
${ }^{8} \quad \sin \left(3 a^{\circ}\right)=\frac{11}{5 \sqrt{5}}$
4 marks

2 There are 3 processing marks $\cdot^{4},{ }^{6}$ and ${ }^{8}$. None of these are available for an answer >1.
$3 \sin (2 a)=0.8$ and $\cos (2 a)=0.6$ are the only two decimal fractions which may receive any credit.

4 Some candidates may double the height of the triangle and then call the base angle 2a. This error is equivalent to Common Error 1 illustrated on the right.

Common Error 2

An example based on a numerical error in Pythagoras

X	\bullet	$\sin \left(a^{\circ}\right)=\frac{1}{\sqrt{3}}$
$\sqrt{ }$	\bullet^{2}	$\sin \left(2 a^{\circ}\right)=2 \sin \left(a^{\circ}\right) \cos \left(a^{\circ}\right)$
$X \sqrt{ }$	\bullet^{3}	$\cos \left(a^{\circ}\right)=\frac{2}{\sqrt{3}}$
X	\bullet^{4}	$\sin \left(2 a^{\circ}\right)=\frac{4}{3}$
$\sqrt{ }$	\bullet^{5}	$\sin \left(3 a^{\circ}\right)=\sin \left(2 a^{\circ}\right) \cos \left(a^{\circ}\right)+\cos \left(2 a^{\circ}\right) \sin \left(a^{\circ}\right)$
X	\bullet^{6}	$\cos \left(2 a^{\circ}\right)=2 \cos ^{2}\left(a^{\circ}\right)-1=\frac{5}{3}$ or equivalent
$X \sqrt{ }$	\bullet^{7}	$\sin \left(3 a^{\circ}\right)=\frac{4}{3} \cdot \frac{2}{\sqrt{3}}+\frac{5}{3} \cdot \frac{1}{\sqrt{3}}$
X	\bullet^{8}	$\sin \left(3 a^{\circ}\right)=\frac{13}{3 \sqrt{3}}$

Common Error 1 An example of Incorrect formulae

$\sqrt{ }$	$\bullet \bullet^{1}$	$\sin \left(a^{\circ}\right)=\frac{1}{\sqrt{5}}$
X	$\bullet \bullet^{2}$	$\sin \left(2 a^{\circ}\right)=2 \sin \left(a^{\circ}\right)$
X	$\bullet \bullet^{4}$	$\sin \left(2 a^{\circ}\right)=\frac{2}{\sqrt{5}}$
$\sqrt{ }$	$\bullet \bullet^{5}$	$\sin \left(3 a^{\circ}\right)=\sin \left(2 a^{\circ}\right) \cos \left(a^{\circ}\right)+\cos \left(2 a^{\circ}\right) \sin \left(a^{\circ}\right)$
$\sqrt{ }$	\bullet^{3}	$\cos \left(a^{\circ}\right)=\frac{2}{\sqrt{5}}$
X	\bullet^{6}	$\cos \left(2 a^{\circ}\right)=\frac{4}{\sqrt{5}}$
X	\bullet	$\sin \left(3 a^{\circ}\right)=\frac{2}{\sqrt{5}} \cdot \frac{2}{\sqrt{5}}+\frac{4}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}}$
X	$\bullet \bullet^{8}$	$\sin \left(3 a^{\circ}\right)=\frac{8}{5}$

$$
9 \quad y=\frac{1}{x^{3}}-\cos 2 x, x \neq 0, \text { find } \frac{d y}{d x} .
$$

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
8		4	C / B	$\mathrm{C} 3, \mathrm{C} 20$	CN	$06 / 79$

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ ss express in differentiable form
$\bullet{ }^{2}$ pr differentiate a term with a negative power
${ }^{3}$ pr start to process a compound derivative
- ${ }^{3}$ pr complete compound derivative

Primary Method : Give 1 mark for each -

- x^{-3}
- ${ }^{2} \quad-3 x^{-4}$
- $\quad+\sin 2 x$
- ${ }^{4} \times 2$

Notes

1 For clearly integrating, correctly or otherwise, only ${ }^{1}$ is available.

2 If you cannot decide whether a candidate has attempted to differentiate or integrate, assume they have attempted to differentiate.

10 A curve has equation $y=7 \sin x-24 \cos x$.
(a) Express $7 \sin x-24 \cos x$ in the form $k \sin (x-a)$ where $k>0$ and $0 \leq a \leq \frac{\pi}{2}$.
(b) Hence find, in the interval $0 \leq x \leq \pi$, the x-coordinate of the point on the curve where the gradient is 1 .

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
10	a	4	C	T13	CR	$06 / 97$
	b	3	A/B	T17	CR	

The primary method m / s is based on the following generic m / s.
THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME
${ }^{1}$ ss expand
${ }^{\bullet 3}$ pr process k
${ }^{4}$ pr process a
$\bullet{ }^{5}$ ic state result
${ }^{-6}$ ss set derivative $=$ gradient

- ${ }^{7}$ pr process ' x ' from the derivative
- $\quad k \sin (x) \cos (a)-k \cos (x) \sin (a)$
stated explicitly
- ${ }^{2} k \cos (a)=7, k \sin (a)=24$
stated explicitly
$\bullet^{3} \quad k=25$
- ${ }^{4} \quad a=1.29 \quad 4$ marks

Primary Method : Give 1 mark for each -
$25 \sin (x-1.29)$

- $\quad \frac{d y}{d x}=25 \cos (x-1.29)=1$
${ }^{{ }^{7}} \quad x=2.82$

Notes

In (a)
$1 \quad k(\sin (x) \cos (a)-\cos (x) \sin (a))$ is acceptable for $\cdot{ }^{+1}$.
2 Treat $k \sin (x) \cos (a)-\cos (x) \sin (a)$ as bad form if ${ }^{2}$ is gained.

3 No justification is required for ${ }^{3}$.
$4 .{ }^{3}$ is not available for an unsimplified $\sqrt{625}$.
$525(\sin (x) \cos (a)-\cos (x) \sin (a))$ is acceptable evidence for $\cdot{ }^{1}$ and ${ }^{3}$.

6 Candidates may use any form of the wave equation to start with as long as their final answer is in the form $k \sin (x-a)$. If it is not, then ${ }^{4}$ is not available.
$7 \quad{ }^{4}$ is only available for
(i) an answer in radians which rounds to 1.3 OR
(ii) an answer given as a multiple of $\pi \quad$ e.g. $\quad \frac{37}{90} \pi$.
$8 \quad k \cos (a)=7$ and $k \sin (a)=-24$ leading to $\mathrm{a}=4.99$ can only gain ${ }^{4}$ if a comment intimating that this answer is not in the given interval is given.
$\ln (b)$
9 In (b) candidates have a choice of two starting points.
They can either start from $y=25 \sin (x-1.29)$ as shown in the Primary method OR
they can start from $\frac{d y}{d x}=7 \cos (x)+24 \sin (x)$. Either of these starting positions may be awarded ${ }^{5}$.

10 Candidates who work in degrees will lose ${ }^{6}$ for attempting to differentiate .
$11 .{ }^{7}$ is only available as a consequence of solving $\frac{d y}{d x}=1$. Do not penalise "extra" solutions at the.7 stage (e.g. 6.04).

11 It is claimed that a wheel is made from wood which is over 1000 years old.
To test this claim, carbon dating is used.
The formula $A(t)=A_{0} e^{-0.000124 t}$ is used to determine the age of the wood, where A_{0} is the amount of carbon in any living tree, $A(t)$ is the amount of carbon in the wood being dated and t is the age of the wood in years For the wheel it was found that $A(t)$ was 88% of the amount of carbon in a living tree. Is the claim true?

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
11		5	A/B	A30	CR	$06 / 36$

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ ic interpret information
$\bullet{ }^{2}$ ic substitute
$\bullet{ }^{3}$ ss take logarithms
\bullet^{4} pr process
\bullet. ic interpret result

Notes

1 Candidates may choose a numerical value for A_{0} at the start of their solution. Accept this situation.
$2 .{ }^{5}$ is only available if ${ }^{4}$ has been awarded.
3 In following through from an error, ${ }^{5}$ is only available for a positive value of t.

Primary Method : Give 1 mark for each •

- $\quad A(t)=0.88 A_{0}$
stated or implied by ${ }^{2}$
${ }^{2}{ }^{2} \quad e^{-0.000124 t}=0.88$
$\bullet^{3} \quad \ln \left(e^{-0.000124 t}\right)=\ln (0.88) \quad$ stated or implied by . ${ }^{4}$
- ${ }^{4} \quad-0.000124 t=\ln (0.88)$
- $5 \quad t=1031$ years so claim valid $\quad 5$ marks

Alternative Method 1 Graph and Calculator Solution

- ${ }^{1} \quad A(1000)=A_{0} e^{-0.000124 \times 1000}$
- ${ }^{2} \quad 0.883 A_{0}$ and 1000 year old piece of wood contains 88.3% carbon.
\bullet^{3} try a point where $\mathrm{t}>1030$
e.g. $A(1050)$ getting $0.878 A_{0}$
- ${ }^{4}$ sketch of $\mathrm{y}=A_{0} e^{-0.000124 t}$ showing

1. a monotonic decreasing function
2. points representing eg $(1000,88.3 \%)$ etc

- 5 observation that the point lies between the two plotted values for t and so claim valid.

PQRS is a rectangle formed according to the following conditions:

- it is bounded by the lines $x=6$ and $y=12$
- P lies on the curve with equation $y=\frac{8}{x}$ between $(1,8)$ and $(4,2)$
- R is the point $(6,12)$.
(a) (i) Express the lengths of PS and RS in terms of x, the x-coordinate of P .

(ii) Hence show that the area, A square units, of PQRS is given by $\mathrm{A}=80-12 x-\frac{48}{x}$.
(b) Find the greatest and least possible values of A and the corresponding values of x for which they occur.

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
12	a	3	A	C12	CN	$06 / 20$
	b	9	A/B	C12		

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ ic interpret diagram to find PS
\bullet^{2} ic interpret diagram to find RS
$\bullet{ }^{3}$ ic complete proof
${ }^{4}$ ic express in differentiable form
- ${ }^{5}$ ss know to set derivative to zero
${ }^{\bullet}{ }^{6}$ pr differentiate
${ }^{\bullet}{ }^{7}$ pr process equation
${ }^{8}$ pr evaluate area at the turning point
- ${ }^{9}$ pr evaluate area at the end point
- ${ }^{10}$ pr evaluate area at the end point
- ${ }^{11}$ ic state conclusion

Primary Method : Give 1 mark for each -

- $\quad P S=6-x$
- $2 \quad R S=12-\frac{8}{x}$
- Area $=(6-x)\left(12-\frac{8}{x}\right)$ and complete $\quad \mathbf{3}$ marks
- $48 x^{-1}$
- $\frac{d A}{d x}=0$
$\bullet^{6}-12+48 x^{-2}$
- ${ }^{7} \quad x=2$
- ${ }^{8} \quad A(2)=32$
- ${ }^{9} \quad A(1)=20$
- ${ }^{10} \quad A(4)=20$
${ }^{11} \max . A=32$ at $x=2$ and $\min . A=20$ at $x=1$ or $x=4$

Notes

1 For \cdot^{3} there needs to be clear evidence that candidates have multiplied out the brackets in order to complete the proof.

2 An " $=0$ " must appear somewhere in the working between ${ }^{4}$ and $\cdot{ }^{7}$.

3 At the $\cdot{ }^{7}$ stage, ignore the omission or inclusion of $x=-2$.
$4 \quad .8$ has to be as a consequence of solving $\frac{d A}{d x}=0$.
$5 .{ }^{11}$ is only available if both end points have been considered.

