Holiday Revision

1. The vertices of a triangle are $P(-1,-1), Q(2,1)$ and $R(-6,2)$.

Find the equation of the altitude drawn from Q.
2. Simplify
a) $2 \log _{9} 2+3 \log _{9} 3-\log _{9} 36$
b) $\log _{2} 3+\log _{2} 4+\log _{2} 5-\log _{2} 30$
3. Find y^{\prime} in each example
a) $y=(2 x+1)\left(x^{2}-2\right)$
b) $y=\frac{2 x+1}{\sqrt{x}}$
4. Evaluate $\int_{0}^{1}\left(2 x^{2}+3\right) d x$.
5. Solve the equation $2 \sin 3 x-1=0$, for $0<x<180^{\circ}$.

6 Solve the equation $3 \sin 2 x=5 \cos x, 0^{\circ}<x<360^{\circ}$
7. Express $x^{2}+6 x+11$ in completed square form and state the minimum.

Hence state the maximum value of $g(x)=\frac{1}{x^{2}+6 x+11}$.
8. Find the equation of the tangent to the circle $x^{2}+y^{2}=29$ at the point $(-5,2)$ on the circle.
9. Find the equation of the tangent to the curve $y=x^{3}-4 x-5$ at $x=1$. Find the angle which this tangent makes with the positive direction of the x axis.
10. Find the value of θ for which the function $8 \cos \left(2 \theta-\frac{\pi}{4}\right)$ has its maximum value.
11. Find the possible values of k for which the line $x-y=k$ is a tangent to the circle $x^{2}+y^{2}=18$.
12. A function is defined by the formula $f(x)=4 x^{2}(x-3)$.
a) Write down the coordinates of the points where the curve cuts the coordinate axis.
b) Find the stationary values and determine their nature.
c) Sketch the curve $y=f(x)$.
d) Find the area enclosed by the curve and the x axis.
13.

The diagram shows a sketch of the function $y=f(x)$.
On separate diagrams draw the graphs of
a) $-f(x)$
b) $f(x+2)$
c) $3+f(x)$
d) $2-f(x)$

14 Express $\mathrm{f}(\mathrm{x})=5 \cos x+4 \sin x$ in the form $k \cos (x-\alpha)$.
(i) State the $\mathrm{max} / \mathrm{min}$ values of f and the values of x at which the max/min occur.
(ii) Solve the equation $5 \cos x+4 \sin x=3$.
15. Find the equation of the tangent to the curve $y=4 x^{3}-2$ at the point where $x=-1$.
16.

Find the equation of the tangent to the circle centre $(3,5)$ at the point $(5,3)$ on the circle.
17. The initial quantity of pollution in the loch is 25 tons, the Council remove 35% during the week and a factory discharges 8 tons into the loch each Sunday.
i) Find the amount of pollution after 1, 2, 3 and 4 weeks
ii) Establish a recurrence relation and hence find the long term state of the loch.
18. If $f(x)=2 x+1$ and $g(x)=1-5 x$ find
a) $f(g(x))$
b) $g(f(x))$

Hence solve the equation $f(g(x))-g(f(x))=8 x+7$
19. Evaluate $\int_{-1}^{3}\left(x^{2}+2\right) d x$ and draw a sketch to illustrate the area represented by this integral.
20. For all points on the curve $y=f(x), f(x)=1-4 x$. If the curve passes through the point $(1,-1)$, find the equation of the curve.
21.

The diagram shows a sketch of a cubic function f with stationary values at the origin and $(2,4)$. Sketch the graph of the derived function.
22. Given that $\frac{x^{2}+4 x+10}{2 x+5}=n$, form a quadratic equation in x and hence show that if $n \leq-3$ or $n \geq 2$ then the roots will be real.
23. If $y=\frac{(x+2)(x+1)}{\sqrt{x}}$, find y when $x=4$.
24. For what values of x is the function $y=\frac{1}{3} x^{3}-2 x^{2}-5 x-4$ increasing.
25. If $\sin A=\frac{8}{17}$ and A is acute, find the exact values of
a) $\sin 2 \mathrm{~A}$
b) $\cos 2 \mathrm{~A}$
26. Show that the point $(3,-1)$ lies on the circle with equation

$$
x^{2}+y^{2}-4 x+6 y+8=0
$$

and find the equation of the tangent to the circle at this point.
27. In the diagram shown, find the equation of the altitude from A and the median from B.

28. The number of bacteria present in a beaker, during an experiment can be measured using the formula $N(t)=30 e^{1.25 t}$ where t is the number of hours passed.
(a) How many bacteria are in the beaker at the start of the experiment?
(b) Calculate the number of bacteria present after 5 hours.
(c) How long will it take for the number of bacteria present to treble?
29. Solve for $x>0$
(a) $\log _{a} 5+\log _{a} 2 x=\log _{a} 60$
(b) $2 \log _{a} 3+\log _{a} x=\log _{a} 36$
(c) $\frac{1}{2} \log _{x} 64+2 \log _{x} 2=5$
(d) $2 \log _{x} 6-2 / 3 \log _{x} 8=2$
30. Find where the following curves cut the x-axis.
(a) $y=\log _{4} x-2$
(b) $y=\log _{2}(x-4)-1$
31. Find where the following curves cut the y-axis.
(a) $y=\log _{2}(x+4)+1$
(b) $y=\log _{3}(x+27)+5$
32. The mass, M grams, of a radioactive isotope after a time of tyears, is given by the formula $M=M_{0} e^{-k t}$ where $M o$ is the initial mass of the isotope.
In 5 years a mass of 10 grams of the isotope is reduced to 8 grams.
(a) Calculate k.
(b) Calculate the half-life of the substance i.e. the time taken for half the substance to decay.
33. If $f(x)=\frac{1}{2} x+8$ find $f^{-1}(x)$
34. If $f(x)=x^{3}-6$ find $f^{-1}(x)$ and state the domain and range of f.
35. If $f(x)=2 \sqrt{ } x+5$, state a suitable domain for f. Find the inverse function.
36. Using $R \sin (x-)$ find the maximum values of f and g, and the corresponding values of x for $0 \leq x \leq 2 \pi$.
(a) $f(x)=1+\sqrt{2} \cos x-\sqrt{2} \sin x$
(b) $g(x)=2+\sqrt{3} \sin x-\cos x$.

