Prelim Examination 2002 / 2003 (Assessing Units 1 \& 2)

MATHEMATICS
 Higher Grade - Paper I (Non~calculator)

Time allowed - $\mathbf{1}$ hour 10 minutes

Read Carefully

1. Calculators may not be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained by readings from scale drawings will not receive any credit.
4. This examination paper contains questions graded at all levels.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

All questions should be attempted

1. The diagram shows an arc AB of the circle with its centre at C . The coordinates of A and B are $(4,-7)$ and $(-8,-1)$ respectively.
(a) Find the equation of the perpendicular bisector of the chord AB .
(b) Hence establish the coordinates of C, given that C is vertically above A .
(c) Write down the equation of the circle, centre C, passing through the points A and B.
2. For what value(s) of p does the equation $(4 p+1) x^{2}-3 p x+1=0$ have equal roots?
3. The diagram below shows part of the the graph of $y=g(x)$.

The function has stationary points at $(0,-3)$ and $(2,0)$ as shown.

Sketch the graph of the related function $y=g(-x)+3$.
4. (a) For what value of k is $x+2$ a factor of $x^{3}-x^{2}+2 k x-8$?
(b) Hence fully factorise the expression $x^{3}-x^{2}+2 k x-8$ when k takes this value.
5. The daigram shows the graph of $y=\sin 3 x$, for $0 \leq x \leq \frac{2 \pi}{3}$, and the line with equation $y=\frac{1}{2}$.

Establish the coordinates of the point P .
6. A curve has as its derivative $\frac{d y}{d x}=8 x-3$.

Given that the point $(1,-3)$ lies on this curve, express y in terms of x.
7. A sequence of numbers is defined by the recurrence relation $U_{n+1}=k U_{n}+c$, where k and c are constants.
(a) Given that $U_{2}=70, U_{3}=65$ and $U_{4}=62 \cdot 5$, find algebraically, the values of k and c.
(b) Hence find the limit of this sequence.
(c) Express the difference between the fifth term and the limit of this sequence as a percentage of the limit, correct to the nearest percent.
8. A function is given as $f(x)=3 x^{3}-9 x^{2}+27 x$ and is defined on the set of real numbers.
(a) Show that the derivative of this function can be expressed in the form $f^{\prime}(x)=a\left[(x-b)^{2}+c\right]$ and write down the values of a, b and c.
(b) Explain why this function has no stationary points and is in fact increasing for all values of x.
9. The functions $f(x)=x^{2}-9$ and $h(x)=3+2 x$ are defined on the set of real numbers.
(a) Evaluate $h(f(3))$.
(b) Find an expression, in its simplest form, for $f(h(x))$.
(c) For what value(s) of x does $f(h(x))=f(x)$?
10. In the diagram below $\mathrm{AB}=\sqrt{6}, \mathrm{AD}=\sqrt{2}$ and $\mathrm{DC}=\sqrt{3}$. Angle $\mathrm{BCD}=x^{\circ}$.

(a) Show clearly that $\tan x^{\circ}=\frac{2}{\sqrt{3}}$.
(b) Hence show that $\sin 2 x^{\circ}=\frac{4}{7} \sqrt{3}$.

Prelim Examination 2002 / 2003 (Assessing Units 1 \& 2)

MATHEMATICS
 Higher Grade - Paper II

Time allowed - $\mathbf{1}$ hour $\mathbf{3 0}$ minutes

Read Carefully

1. Calculators may be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained by readings from scale drawings will not receive any credit.
4. This examination paper contains questions graded at all levels.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

All questions should be attempted

1. Triangle PQR has vertices $\mathrm{P}(-1, k), \mathrm{Q}(3,10)$ and $\mathrm{R}(11,2)$ as shown.

(a) Given that the gradient of side PQ is 3 , find the equation of PQ .
(b) Hence find k, the y-coordinate of vertex P .
(c) Find the equation of the median from P to QR .
(d) Show that this median is at right-angles to side QR. What type of triangle is PQR ?
2. Evaluate $f^{\prime}(4)$ when $f(x)=\frac{x-2 \sqrt{x}}{x^{2}}$.
3. Two functions are defined as $f(x)=a x^{2}-2 b$ and $h(x)=\frac{2 x-6 b}{3}$, where a is a constant .
(a) Given that $f(2)=h(2)$, show clearly that $a=\frac{1}{3}$.
(b) If $b=p x-6$, show that $f(x)=\frac{1}{3} x^{2}-2 p x+12$.
(c) Hence state the values of p for which $f(x)=0$ has no real roots.
4. A fishing boat's fish hold is in the shape of the prism shown opposite.
The length of the hold is 12 metres.

The cross-section of the hold is represented in the coordinate diagram below.

All the units are in metres, with the floor of the hold represented by the curve $y=\frac{1}{18}\left[x^{2}-16 x+100\right]$.

(a) Find the values of a and b, the x-coordinates of P and Q .
(b) Show clearly that the area between the line PQ and the curve $y=\frac{1}{18}\left[x^{2}-16 x+100\right]$ can be calculated by evaluating the integral: $A=\frac{1}{18} \int_{a}^{b}\left(16 x-x^{2}-28\right) d x$.
(c) Calculate this area in square metres.
(d) Hence calculate the volume of the hold, in cubic metres, by first establishing the total cross-sectional area of the hold.
5. A curve has as its equation $y=\frac{1}{32}\left(x^{4}+48\right)$.
(a) At what point on the curve is the gradient of the tangent equal to 1 ?
(b) Write down the equation of this tangent.
6. Certain radioisotopes are used as tracers, to track down diseased tissue within the body, and then be absorbed, to act as a long-term radio-therapy treatment. Their passage through the body and mass is ascertained by means of a Geiger-Müller counter.

During trials of a particular radioisotope the following information was obtained.

- the isotope loses 3% of its mass every hour
- the maximum recommended mass in the bloodstream is 165 mgs
- 100 mgs is the smallest mass detectable by the Geiger-Müller counter
(a) An intial dose of 150 mgs of the isotope is injected into a patient.

Would the mass remaining after 12 hours still be detectable by the Geiger-Müller counter?
Your answer must be accompanied by appropriate working.
(b) After the initial dose, top-up injections of 50 mgs are given every 12 hours.

Comment on the long-term suitabilty of this plan.

Your answer must be accompanied by appropriate working.

7. The diagram shows a circle, centre C , with equation $x^{2}+y^{2}-8 x-4 y-5=0$.

Two common tangents have been drawn from the point P to the points S and $T(7,6)$ on the circle.

(a) Find the centre and radius of the circle. $\mathbf{2}$
(b) Hence find the equation of the tangent PT. 3
(c) Given now that the tangent PS is parallel to the y-axis, determine the coordinates of S and P.
8. Solve algebraically the equation

$$
3 \cos 2 x^{o}=7 \cos x^{o}, \text { where } 0 \leq x<360 .
$$

9. The curve below has as its equation $y=x^{3}-6 x^{2}+k x+4$, where k is a constant. $\mathrm{A}(1,8)$ is a stationary point.

(a) Using the x-coordinate of A, to help you, find the value of k. 4
(b) Hence find the coordinates of the other stationary point at B.
