Prelim Examination 2001 / 2002 (Assessing Units 1 & 2)

MATHEMATICS Higher Grade - Paper I (Non~calculator)

Time allowed - 1 hour 10 minutes

Read Carefully

- 1. Calculators may not be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained by readings from scale drawings will not receive any credit.
- 4. This examination paper contains questions graded at all levels.

FORMULAE LIST

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{\left(g^2+f^2-c\right)}.$

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

 $a \cdot b = |a| |b| \cos\theta$, where θ is the angle between a and b. Scalar Product:

$$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae:

or

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$
$$\sin 2A = 2\sin A \cos A$$

Table of standard derivatives:	f(x)	f'(x)
	$\sin ax$	$a \cos ax$
	$\cos ax$	$-a \sin ax$

.

Table of standard integrals:

$$f(x) \qquad \int f(x) \, dx$$

$$\sin ax \qquad -\frac{1}{a} \cos ax + C$$

$$\cos ax \qquad \qquad \frac{1}{a} \sin ax + C$$

- 2. A sequence is defined by the recurrence relation $U_{n+1} = 0.6U_n + 8$.
 - (a) Explain why this sequence has a limit as $n \to \infty$. (1)

(2)

(2)

(5)

- (b) Find the limit of this sequence.
- (c) Given that $L U_1 = 3$, where L is the limit of this sequence, establish the value of U_0 , the initial value. (3)
- 3. A function is defined on a suitable domain as $f(x) = \frac{1}{\sqrt{x}} (x^2 x)$.
 - (a) Differentiate f with respect to x, expressing your answer with positive indices. (4)
 - (b) Hence find the rate of change of f when x = 4.
- 4. The line with equation x + 3y = 12 meets the x and the y axes at the points A and B respectively.

Find the equation of the perpendicular bisector of AB.

5. Two functions f and g are defined on the set of real numbers as follows :

f(x) = 8-2x, $g(x) = \frac{1}{2}(x+8)$.

(a) Evaluate
$$f(g(2))$$
. (1)

(b) Find an expression, in its simplest form, for g(f(x)). (2)

(c) Hence prove that
$$f^{-1}(x) = \frac{1}{2} [g(f(x))].$$
 (3)

1.

6. The circle below, centre C, has as its equation $x^2 + y^2 - 4x - 10y + 19 = 0$. M(1,3) is the mid-point of the chord AB.

(a)	Write down the coordinates of C, the centre of the circle.	(1)

- (b) Show that the equation of the chord AB can be written as x = 7 2y. (3)
 - (c) Hence find algebraically the coordinates of A and B.
- 7. Part of the graph of y = f(x) is shown in the diagram.

Sketch the graph of the related function y = -f(x) - 3, showing all the relevant points.

(4)

8. Find a given that
$$\int_{a}^{2a} (10-2x) dx = 8$$
, where a is a positive whole number. (5)

9. Part of the graph of the curve $y = x(x^2 - 5x + 6)$ is shown in the diagram. The tangent to the curve at the point where x = 1 is also shown.

- (a) Find the equation of the tangent to the curve at the point where x = 1. (4)
- (b) Show that this tangent also passes through one of the points where the curve crosses the *x*-axis. (2)

[END OF QUESTION PAPER]

Prelim Examination 2001 / 2002 (Assessing Units 1 & 2)

MATHEMATICS Higher Grade - Paper II

Time allowed - 1 hour 30 minutes

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained by readings from scale drawings will not receive any credit.
- 4. This examination paper contains questions graded at all levels.

1. Triangle ABC has vertices A(5,3), B(-3,7) and C(-6,-8) as shown. The altitude through B meets AC at P.

2. Solve algebraically the equation

$$\sin x^{\circ} - 3\cos 2x^{\circ} + 2 = 0, \qquad 0 \le x < 360.$$
(5)

3. Two functions are defined as f(x) = (x+2)(x+1) and g(x) = x(x-2).

(a) Given that
$$h(x) = f(g(x))$$
, show clearly that $h(x) = x^4 - 4x^3 + 7x^2 - 6x + 2$. (3)

(b)

4. Three wheels are positioned in such a way that their centres are collinear.

> When placed on a set of rectangular axes the equations of the two larger circles are

- Write down the coordinates of the two centres C_1 and C_2 . (a)
- Calculate the radii of the two larger circles and the distance between the (b) two centres C_1 and C_2 . (4)
- (c) Hence establish the centre and radius of the small circle and write down its equation.
- 5. A new 24 volt lead acid battery is being tested as a possible power source for a battery-powered wheelchair.

The battery, which has an initial capacity of 20 Ah (ampere hours), is being **artificially** drained over a 12 hour period to represent 1 month of use and an operating distance of 300 miles. It has been found that by the end of each draining period the battery has lost 24% of its initial capacity at the start of that session.

After each 12 hour draining period the battery is hooked up to a super-charger for 12 hours which allows it to regain 3 Ah of capacity.

- What is the capacity of the battery immediately after its fifth re-charging period? (a)
- (b) The battery is unusable if its capacity falls below $12 \cdot 51$ Ah. By considering the limit of a suitable sequence, make a comment on the durability and lifespan of the battery.

(3)

(2)

(3)

6. A function is defined as $f(x) = \sqrt{x}(x-3)$, where only the positive value of \sqrt{x} is taken for each value of x > 0.

Part of the graph of y = f(x) is shown below.

(a) Find the coordinates of the turning point at P and the root at R.

(6)

- 7. An equation is given as $\frac{3}{4}x^2 (k+3)x (k^2+2k) = 0$.
 - (a) Prove that this equation has real roots for <u>all</u> real values of k. (4)
 - (b) Hence write down the value of k which allows this equation to have equal roots and solve the equation for x when k takes this value. (4)

8. In the diagram below PQRS is a square of side 2x cm.

A straight line OA, measuring 4 cm, has been drawn in such a way that A lies at the centre of the square and OA is parallel to PS.

- (a) Show that $OP^2 = 2x^2 8x + 16$.
- (b) Hence, by completing the square, or otherwise, find x for which the length of OP is at a minimum and state the minimum length of OP. (4)

(4)

[END OF QUESTION PAPER]