Prelim Examination 2001 / 2002
 (Assessing Units 1 \& 2)

MATHEMATICS
 Higher Grade - Paper I (Non~calculator)

Time allowed - 1 hour 10 minutes

Read Carefully

1. Calculators may not be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained by readings from scale drawings will not receive any credit.
4. This examination paper contains questions graded at all levels.

FORMULAE LIST

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{\left(g^{2}+f^{2}-c\right)}$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product: $\quad a \cdot b=|a||b| \cos \theta$, where θ is the angle between a and b.
or

$$
a \cdot b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } a=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Trigonometric formulae:

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \cos 2 A=\cos ^{2} A-\sin ^{2} A \\
&=2 \cos ^{2} A-1 \\
&=1-2 \sin ^{2} A \\
& \sin 2 A=2 \sin A \cos A
\end{aligned}
$$

Table of standard derivatives:

$$
\begin{array}{cr}
f(x) & f^{\prime}(x) \\
\sin a x & a \cos a x \\
\cos a x & -a \sin a x
\end{array}
$$

Table of standard integrals:

$$
\begin{array}{cc}
f(x) & \int f(x) d x \\
\sin a x & -\frac{1}{a} \cos a x+C \\
\cos a x & \frac{1}{a} \sin a x+C
\end{array}
$$

All questions should be attempted
1.
2. A sequence is defined by the recurrence relation $U_{n+1}=0 \cdot 6 U_{n}+8$.
(a) Explain why this sequence has a limit as $n \rightarrow \infty$.
(b) Find the limit of this sequence.
(c) Given that $L-U_{1}=3$, where L is the limit of this sequence, establish the value of U_{0}, the intitial value.
3. A function is defined on a suitable domain as $f(x)=\frac{1}{\sqrt{x}}\left(x^{2}-x\right)$.
(a) Differentiate f with respect to x, expressing your answer with positive indices.
(b) Hence find the rate of change of f when $x=4$.
4. The line with equation $x+3 y=12$ meets the x and the y axes at the points A and B respectively.

Find the equation of the perpendicular bisector of AB .
5. Two functions f and g are defined on the set of real numbers as follows :

$$
f(x)=8-2 x \quad, \quad g(x)=\frac{1}{2}(x+8)
$$

(a) Evaluate $f(g(2))$.
(b) Find an expression, in its simplest form, for $g(f(x))$.
(c) Hence prove that $\quad f^{-1}(x)=\frac{1}{2}[g(f(x))]$.
6. The circle below, centre C , has as its equation $x^{2}+y^{2}-4 x-10 y+19=0$. $\mathrm{M}(1,3)$ is the mid-point of the chord AB .

(a) Write down the coordinates of C, the centre of the circle.
(b) Show that the equation of the chord AB can be written as $x=7-2 y$.
(c) Hence find algebraically the coordinates of A and B.
7. Part of the graph of $y=f(x)$ is shown in the diagram.

Sketch the graph of the related function $y=-f(x)-3$, showing all the relevant points.

(3)
8. Find a given that $\int_{a}^{2 a}(10-2 x) d x=8$, where a is a positive whole number.
9. Part of the graph of the curve $y=x\left(x^{2}-5 x+6\right)$ is shown in the diagram. The tangent to the curve at the point where $x=1$ is also shown.

(a) Find the equation of the tangent to the curve at the point where $x=1$.
(b) Show that this tangent also passes through one of the points where the curve crosses the x-axis.

Prelim Examination 2001 / 2002 (Assessing Units 1 \& 2)

MATHEMATICS Higher Grade - Paper II

Time allowed - 1 hour 30 minutes

Read Carefully

1. Calculators may be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained by readings from scale drawings will not receive any credit.
4. This examination paper contains questions graded at all levels.
5. Triangle ABC has vertices $\mathrm{A}(5,3), \mathrm{B}(-3,7)$ and $\mathrm{C}(-6,-8)$ as shown. The altitude through B meets AC at P .

(a) Find the equation of side AC and the equation of the altitude BP.
(b) Hence find the coordinates of P .
(c) BP is produced in such a way that $\mathrm{PD}=\frac{1}{2} \mathrm{BP}$. Establish the coordinates of D .
(d) By considering gradients, calculate the size of angle DCP to the nearest degree.
6. Solve algebraically the equation

$$
\begin{equation*}
\sin x^{\circ}-3 \cos 2 x^{\circ}+2=0, \quad 0 \leq x<360 \tag{5}
\end{equation*}
$$

3. Two functions are defined as $f(x)=(x+2)(x+1)$ and $g(x)=x(x-2)$.
(a) Given that $h(x)=f(g(x))$, show clearly that $h(x)=x^{4}-4 x^{3}+7 x^{2}-6 x+2$.
(b)
4. Three wheels are positioned in such a way that their centres are collinear.

When placed on a set of rectangular axes the equations of the two larger circles are
$x^{2}+y^{2}+16 x+12 y=0$ and $(x-16)^{2}+(y-4)^{2}=100$, as shown.

(a) Write down the coordinates of the two centres C_{1} and C_{2}.
(b) Calculate the radii of the two larger circles and the distance between the two centres C_{1} and C_{2}.
(4)
(c) Hence establish the centre and radius of the small circle and write down its equation.
5. A new 24 volt lead acid battery is being tested as a possible power source for a battery-powered wheelchair.
The battery, which has an initial capacity of 20 Ah (ampere hours), is being artificially drained over a 12 hour period to represent 1 month of use and an operating distance of 300 miles.
It has been found that by the end of each draining period the battery has
 lost 24% of its initial capacity at the start of that session.
After each 12 hour draining period the battery is hooked up to a super-charger for 12 hours which allows it to regain 3 Ah of capacity.
(a) What is the capacity of the battery immediately after its fifth re-charging period?
(b) The battery is unusable if its capacity falls below $12 \cdot 51 \mathrm{Ah}$.

By considering the limit of a suitable sequence, make a comment on the durability and lifespan of the battery.
6. A function is defined as $f(x)=\sqrt{x}(x-3)$, where only the positive value of \sqrt{x} is taken for each value of $x>0$.
Part of the graph of $y=f(x)$ is shown below.

(a) Find the coordinates of the turning point at P and the root at R .
(b) Hence calculate the shaded area below giving your answer correct to 2 decimal places.

(5)
7. An equation is given as $\frac{3}{4} x^{2}-(k+3) x-\left(k^{2}+2 k\right)=0$.
(a) Prove that this equation has real roots for all real values of k.
(b) Hence write down the value of k which allows this equation to have equal roots and solve the equation for x when k takes this value.
8. In the diagram below PQRS is a square of side $2 x \mathrm{~cm}$.

A straight line OA , measuring 4 cm , has been drawn in such a way that A lies at the centre of the square and OA is parallel to PS.

(a) Show that $\mathrm{OP}^{2}=2 x^{2}-8 x+16$.
(b) Hence, by completing the square, or otherwise, find x for which the length of OP is at a minimum and state the minimum length of OP.

