Higher Chemistry Calculations for the Prelim

1.

$$
2 \mathrm{Ag}_{2} \mathrm{O}(\mathrm{~s}) \quad \rightarrow \quad 4 \mathrm{Ag}(\mathrm{~s}) \quad+\quad \mathrm{O}_{2}(\mathrm{~g})
$$

Calculate the volume of oxygen that is produced when 46.36 g of silver oxide completely decomposes.
2. $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

Calculate the volume of hydrogen gas that is produced when 6.54 g of zinc is added to excess dilute hydrochloric acid.
3. Calculate which reactant is in excess and therefore identify the limiting reactant in the following.
(a) $\mathrm{Zn}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
6.54 g of zinc added to $25 \mathrm{~cm}^{3}$ of dilute sulphuric acid, concentration $2 \mathrm{~mol} \mathrm{l}^{-1}$.
(b) $\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{MgCl}_{2}(\mathrm{aq}) \quad+\quad \mathrm{H}_{2}(\mathrm{~g})$
2.43 g of magnesium added to $100 \mathrm{~cm}^{3}$ of dilute hydrochloric acid, concentration $1 \mathrm{~mol} \mathrm{l}^{-1}$.

4.

Gas syringes are graduated to allow the volume of gases to be measured. A heated box kept a syringe at a temperature greater than $100{ }^{\circ} \mathrm{C}$. The syringe contained $150 \mathrm{~cm}^{3}$ of hydrogen and $50 \mathrm{~cm}^{3}$ of carbon monoxide mixed with $200 \mathrm{~cm}^{3}$ of oxygen. When ignited the gases reacted as shown.
$\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(a) Name the reactant gas which was in excess and give the remaining volume of this gas.
(b) What was the volume and composition of the products of the reaction?
(c) What would have been the reading on the gas syringe if, at the end of the reaction, the gases had been allowed to cool to room temperature?
5. Calculate the percentage yield of 1,2-dibromopropane.
$\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{Br}_{2}$
\rightarrow
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}$

In a preparation, 20.4 g of 1,2-dibromopropane is obtained from 5.2 g of propene.
6. Calculate the mass of ester produced in the following reaction.

$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$ ethylethanoate

The percentage yield from 4.6 g of ethanol is 81%.
7. Calculate the enthalpy of combustion using the following information.
(a) The temperature of $50 \mathrm{~cm}^{3}$ of water is increased by $15^{\circ} \mathrm{C}$.
(b) The temperature of $100 \mathrm{~cm}^{3}$ of water is increased by $23.6^{\circ} \mathrm{C}$.

In part (a), 0.24 g of ethanol was burned. In part (b), 0.18 g of propanol was burned.
8. Calculate the atom economy for each of the following reactions.
(a) Making ethanol from ethene

$$
\mathrm{C}_{2} \mathrm{H}_{4} \quad+\mathrm{H}_{2} \mathrm{O} \quad \rightarrow \quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

(b) Making iron from iron(III) oxide
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+\mathrm{CO}_{2}$
(c) Making calcium oxide from calcium carbonate
CaCO_{3}
\rightarrow
CaO
$+$
CO_{2}

