Higher Computing Science
Database Design & Development
March ‘18

a)	Analysis

	When initially thinking about a database the end user and functional requirements of the database should be considered. 		
		i.e.	Who is it for
				&
			What should it be able to do

	During the analysis the following should be identified:-

End-user requirements:

 the end users are the people who are going to be using the database
 their requirements are the tasks they expect to be able to do using the database

Functional requirements:

 processes and activities that the system has to perform
 information that the system has to contain to be able to carry out its functions

These requirements will help:

 clarify the design of the database
 identify the features to be implemented on the database
 evaluate whether the system is fit for purpose after development is complete

Databases Types

• Flat File Database

These are databases which consist of a single file.

Problems with Flat File Databases

1)	Data Duplication Anomaly

	This means that the same piece of data will be included in the data file more than once. This is a
problem for two reasons:-

	a)	Modification of Data
		When updating the data, every instance the data appears, it will need to be updated. This usually
does not happen, one or two are missed. This means that the database has conflicting data, (data inconsistencies)
		e.g. Someone’s address is entered as two different locations.

	b)	In large databases, if the same data is included several times, this will cause a problem with
memory.

2)	Data Insertion Anomalies

	Some data cannot be entered unless a new record is made. E.g. if the database
	only records sales of products how can it store the information of a product that
	has not been sold yet?
	The data cannot be inserted.

3)	Data Deletion Anomalies

	The opposite of the anomaly above. If an instance, (record), is removed then all
	the data in the instance is also removed. E.g. If we remove an item of stock from
	our range, all information regarding the sale of that product is also removed.
	Other data is lost when the original data is deleted.

Flat File DB Example		Reg Classes:-	Reg Class
							Reg Teacher
							House
							Reg Room
							Forename
							Surname
							Phone Number
							Address

Solution to these problems is to change the flat file database into a linked/relational database.

• Linked/Relational Databases

These are several files which are linked together. This method greatly reduces the problems/anomalies with flat file databases.

	e.g.	Reg Classes:-	Reg Class			Pupils:-	Pupil Forename
					Reg Teacher					Pupil Surname
					House						Address
					Reg Room					Phone Number
											Reg Class*

			Primary Keys are underlined.		Foreign Keys are starred

Tables are linked using primary and foreign keys. A primary key in one table is present as a foreign key in another table. This means there is a one to many relationship with the entities. The table with the primary key in ONE, the table with the foreign key is MANY. Primary keys are unique, foreign keys are not unique.

Using the example above	ONE reg class has MANY pupils

What makes a relational database?

1)	Many linked tables, (files).

2)	Fields held in one table can be shown in other tables via relationships.

3)	Flexible reports can be generated using fields from linked tables.

4)	Flexible queries can be conducted using linked fields from other tables.

Database Terminology

	File/Entity/Table:-	Stores information about 1 topic.

	Record/Occurrence:-	Stores information about 1 person or thing in the topic.

	Field/Attribute:-	Stores 1 single piece of information per record.
	
	Primary Key:-		A field that uniquely identifies one record.

	Entity Integrity:-	The primary key cannot be empty (null), and must be unique.

[bookmark: _GoBack]	Compound key:-	A primary key made from more than one attribute. Also known as a
					concatenated key.
					Required as there is no single field suitable for a primary key.

	Foreign Key:-		A primary key from another entity. Used to create a relationship.

	Referential Integrity:-	A foreign key always refers to an existing record.

	Multi-Valued Attribute:-	A field which stores more than one piece of information per record.
						Normally found in flat file databases.

	Lookups:- 	A field entry is checked against the entries of the same field in another Entity. Used for
				foreign keys. This ensures referential integrity

	Relationships:-		Tables/Files/Entities must be linked to allow data to pass between them.
	There are three types of relationships, (cardinality).

						1 to 1			e.g.		1 school has 1 head teacher
						1 to Many		e.g.		1 school has many departments
						Many to Many		e.g.		Many pupils have many teachers

	Query:-			A search, a sort or both.

b)	Design

	Design Notation:-	
	The way/method, (notation), used to plan (design), a program / website / database etc.

	3 ways to plan a database:-		Entity Occurrence Diagram
							Entity Relationship Diagram
							Data Dictionary

	Entity Occurrence Diagram

	Graphical representation of the relationships between the records (entity occurrences), of one entity and the records in a related entity.
	This helps identify the relationship that exists between the two entities.
	e.g.	a One-to-One relationship

			School			Headteacher

			Taylor			Mr McCormick
			Brannock		Mr Colquhoun
			Cardinal Newman	Mr Ross

			Entity Occurrence Diagram

				School							Headteacher

				Taylor			•				•	Mr Ross

				Brannock		•				•	Mr Colquhoun

				Cardinal Newman	•				•	Mr McCormick

	e.g.	A One-to-Many relationship

			School				Teacher

			Taylor				Mr Lewis
							Mr Richardson
							Mr Price
			Brannock			Mrs Murray
							Mr Smith
			Cardinal Newman		Mr Gray
							Mr McLaughlin

			School								Teacher

			Taylor		•						•	Mr Gray

											•	Mr Lewis

			Brannock	•						•	Mr McLaughlin

											•	Mrs Murray

											•	Mr Price

			Cardinal
			Newman	•						•	Mr Richardson

											•	Mr Smith

	Entity Relationship Diagram:-	
	Graphical representation of the database, used to show the relationships between entities.

		Should include:-		Entity names
						Name of relationship
						Cardinality
						PK’s & FK’s identified
						Attributes (only if question requires it)

	e.g.
Reg Classes
Pupils

			Reg Class	Reg Teacher				Forename	Surname	Address

							contains

			House		Room					Phone number		Reg Class*

			i.e.	One Reg Class	contains	Many	Pupils

	Cardinality:-	The frequency of a relationship

				i.e.	One to many

					Many to one

					One to one

	

					Many to many

Data Dictionary:-	

	Data about data, (meta data).
	Defines the qualities of every field used in the database;
			Should include:	Entity name
						Attribute name
						Attribute type
						Attribute size
						Validation:-	Restricted Choice
								Length Check
								Unique Check
								Range Check
								Presence Check – (required)
								Lookup
						Primary Key?
						Foreign Key?				Etc.	

	e.g.

	Entity
	Attribute
	Data Type
	Key
	Size
	Unique
	Validation

	Trip
	Driver No
	Integer
	PK/FK
	3
	N
	Lookup from Driver Table

	
	Registration No
	Text
	PK/FK
	8
	N
	Lookuop from Van Table

	
	Date
	Date
	PK
	10
	N
	

	
	Route No
	Integer
	FK
	3
	N
	Lookup from Route Table

Notes:-

If PK is entered more than one this means there is a compound key	

			Driver No & Registration No & Route No

If PK/FK is entered this means the field is a foreign key but also part of the primary key.

FK’s are rarely unique.

	

Query:-		A search or sort or both.
			Can be Keyword, Natural Language, Standard Query Language, or Graphical.

			You could be asked to plan/explain a query in the exam.

			Normally using the following layout

	Field(s) & Calculation(s)
	

	Table(s)
	

	Search Criteria
	

	Grouping
	

	Sort order
	

e.g.	Design an SQL query to display a customer’s full name, booking number, start date, hotel name and
resort name for all customers who have an ‘h’ as the second letter of their surname. List these details in alphabetical order of surname; listing customers with the same surname in order of the earliest holiday first. 	(Note:		_ = wildcard for single character
 % = wildcard for many characters)

	Field(s) & Calculation(s)
	firstname, surname, bookingNo, startDate, hotelName, resortName

	Table(s)
	Customer, booking, Hotel, Resort

	Search Criteria
	surname LIKE “_h%”

	Grouping
	

	Sort order
	surname ASC, startDate ASC

Calculating:-	Databases can use formulae and functions to perform calculations.
	Usually used in calculated and summary fields, (aka derived attributes).

Calculated field - a field whose contents are created from other fields in the same record.

Summary field - 	a field whose contents are created from other fields from different records.
			e.g.	Count, Average etc.

Grouping:-	Results from queries can be grouped to make the data easier to follow.
			e.g.	A list of all pupils in Taylor High School could be grouped using Reg Class

					1.1			Name
								Name
								Name
								Name

					1.2			Name
								Name
								Name
								Name

					1.3			Name
								Name
								Name
								Name					etc, etc

Forms:-	Is a layout on screen which allows the user to enter data to create new records or to enter
	criteria for a query. Aka an Input mask.

Reports:-	These show the results of queries.

			Should only show relevant and not
			excessive information.
			i.e. Only those records and fields 				required by the user,

			Should be presented to allow easy
			access to information

			i.e. sorted in an appropriate way which
			makes it easy to extract information.

[image: http://www.databasedev.co.uk/image/report_countiif_results.gif]Describing how a particular report, detailing the files and fields used is a common exam question.

Exam Question:-	How is report created?

	• Files & Fields used
	• Query used
	• Calculated fields used inc. formulae
	• Summary field used inc. formulae
	e.g.	Count, Average etc.

											

Summary Fields

c)	Implementation

NAT 5 REVISION

Structured Query Language, (SQL)

SQL is a type of programming language used in databases.

SQL Operations to know:-	•Select:	- from
						- where:
							º AND, OR, <, >, =
							º order by a max of 2 fields
				• Insert
				• Update
				• Delete
				• Equi-join between 2 tables	

Using the pupils relational database used previously in these notes.

NOTE:-	SQL doesn’t like field names having spaces so we’ll use an underscore where required.

e.g.1	Using SQL to do a simple search					SELECT & WHERE

	1	SELECT * FROM pupils
	2	WHERE surname = ‘Smith’;

	This will find all the records in the pupils file with the surname Smith

e.g.2	Using SQL to do a complex search					AND

	1	SELECT * FROM pupils
	2	WHERE surname = ‘Smith’ AND Date_of_Birth < 25-12-2010;

	This will find all the records in the pupils file with the surname Smith who were born before Christmas
day 2010

e.g.3	Using SQL to get information from 2 tables				EQUI-JOIN

	This is basically the same as SELECT but it allows you to display fields from 2 tables.
	This means we must state the primary and foreign keys in the relationship.
	There is no “Equi-Join” command.

	Equi-join 	=	SELECT + stating relationship

NOTE:-		

File.field		SQL puts the name of the file, then a dot, then the name
of the field.

	e.g.		pupil.forename	means the field called forename from the file called pupils

This is needed when you have two fields with the same name in different tables.

1. SELECT pupils.forename, pupils.surname, pupils.registration_class,
2. registration_classes.registration_teacher
3. FROM pupils,registration_classes
4. WHERE pupils.registration_class=registration_classes.registration.class;
e.g.4	Using SQL to insert data into a database				INSERT

1	INSERT INTO pupils (Forename, Surname, Date_of_Birth, Registration_Class)
	2	VALUES (‘Jim’, ‘Brown’, 25-12-2011, 3.1);

e.g.5	Using SQL to perform a complex sort a database			ORDER BY 2 FIELDS

	1	SELECT * FROM pupils
	2	ORDER BY surname ASC, forename ASC;

e.g.6	Using SQL to update information in the database			UPDATE
	This example finds all pupils with the surname Smith and changes their registration class to 3.1

1	UPDATE pupils
2	SET registration_class = 3.1
3	WHERE surname = ‘Smith’;

e.g.7	Using SQL to delete information in the database			DELETE
	This example deletes all pupils who have Brown as a surname

1	DELETE FROM pupils WHERE
2	surname = ‘Brown’;

HIGHER SQL

Using a relational database with three or more linked tables

You will need to remember		•	UPDATE
					•	SELECT
					•	DELETE
					•	INSERT		

You need to be able to use the above commands as they make use of:-

					•	Wildcards
					•	Aggregate functions	(MIN, MAX, AVG, SUM, COUNT)
					•	Computed Values, alias
					•	GROUP BY
					•	ORDER BY
					•	WHERE

SQL Design Examples

A travel agency uses a relational database to enable their employees to view details of hotels in Scottish
holiday resorts and make bookings for customers.

The details are stored in four separate tables called Hotel, Resort, Booking and Customer.

The structure of these tables is shown below:

[image:]

The design of the SQL query should indicate:

	any field(s) or computed values required
	the table(s) needed to provide all of the details required
	any search criteria to be applied
	what grouping is needed (if appropriate)
	the field(s) used to sort the data and the type(s) of sort required

Planning ahead helps to reduce the amount of frustration that candidates may otherwise encounter when working with the SQL code.

Example 1:	Design a query to display the name, swimming pool details, resort and resort type of any hotel in
a coastal resort that starts with the letter ‘A’.

	Field(s) & Calculation(s)
	hotelName, swimmingPool, resortName, resortType

	Table(s)
	Hotel, Resort

	Search Criteria
	resortType = "coastal" and resortName like "A%"

	Grouping
	

	Sort order
	

Example 2: 	Design a query to display a customer’s full name, booking number, start date, hotel name and
resort name for all customers who have an ‘h’ as the second letter of their surname. List these details in alphabetical order of surname; listing customers with the same surname in order of the earliest holiday first.

	Field(s) & Calculation(s)
	firstname, surname, bookingNo, startDate, hotelName, resortName

	Table(s)
	Customer, Booking, Hotel, Resort

	Search Criteria
	surname LIKE "_h%"

	Grouping
	

	Sort order
	surname ASC, startDate ASC

Example 3: 	Design a query that uses a readable heading to display the cheapest and dearest price per night.

	Field(s) & Calculation(s)
	Dearest price per night = MAX(pricePersonNight),
Cheapest price per night = MIN(pricePersonNight)

	Table(s)
	Hotel

	Search Criteria
	

	Grouping
	

	Sort order
	

Example 4: 	Design a query to display the average number of nights booked.

	Field(s) & Calculation(s)
	AVG(numberNights)

	Table(s)
	Booking

	Search Criteria
	

	Grouping
	

	Sort order
	

Example 5: 	Design a query to display a list of the different types of resort, together with the number of
resorts in each of those categories.

	Field(s) & Calculation(s)
	resortType, COUNT(*)

	Table(s)
	Resort

	Search Criteria
	

	Grouping
	resortType

	Sort order
	

Example 6: 	Design a query to display the number of bookings for hotels in coastal resorts. Show the resort
type and use a readable heading for the results returned by the aggregate function.

	Field(s) & Calculation(s)
	resortType, Number of Hotels = COUNT(*)

	Table(s)
	Resort, Hotel, Booking

	Search Criteria
	resortType = "coastal"

	Grouping
	resortType

	Sort order
	

Example 7: 	Design a query to display a list of each type of meal plan, together with the number of bookings
made for each of those meal plans. List the details from the least popular meal plan to the most popular.

	Field(s) & Calculation(s)
	mealPlan, COUNT(*)

	Table(s)
	Hotel, Booking

	Search Criteria
	

	Grouping
	mealPlan

	Sort order
	COUNT(*) ASC

Example 8: 	Design a query that uses a readable heading to display the total number of people booked into a
hotel in July.

	Field(s) & Calculation(s)
	People booked in July = SUM(numberInParty)

	Table(s)
	Booking

	Search Criteria
	startDate LIKE "%/07/%"

	Grouping
	

	Sort order
	

Example 9: 	Design a SELECT query to display the hotel name and the improved rating, if all hotels in Ayr
gain an extra star (use a readable heading to display the improved ratings).

	Field(s) & Calculation(s)
	hotelName, Improved rating = starRating + 1

	Table(s)
	Hotel, Resort

	Search Criteria
	resortName = “Ayr”

	Grouping
	

	Sort order
	

Example 10: 	Design a query to display the surname, booking number, number of nights, number in party,

price per night and the total cost of each booking (with a readable column heading). Display the dearest booking first.

	Field(s) & Calculation(s)
	surname, bookingNo, numberNights, numberInParty, pricePersonNight, Total Cost = (numberNights * numberInParty * pricePersonNight)

	Table(s)
	Customer, Booking, Hotel

	Search Criteria
	

	Grouping
	

	Sort order
	numberNights * numberInParty * pricePersonNight DESC

Note: 	We are using the following relational database to exemplify the Higher SQL commands.

A travel agency uses a relational database to enable their employees to view details of hotels in Scottish
holiday resorts and make bookings for customers.

The details are stored in four separate tables called Hotel, Resort, Booking and Customer.

The structure of these tables is shown below:

[image:]

[image:]

• Wildcards:-		A character used to replace one or more characters in a string.
			Used when incomplete information is available.
			Used with the LIKE command.

			 _		is a wildcard for any single character		(? In MS Access)

			%		is a wildcard for any characters		(* In MS Access)

Example 1: 	used to search the database to display the name, swimming pool details, resort and resort type of
any hotel in a coastal resort that starts with the letter ‘A’.

SELECT hotelName, swimmingPool, resortName, resortType
FROM Hotel, Resort
WHERE Hotel.resortID = Resort.resortID AND resortName LIKE ‘A%’ AND resortType = ‘coastal’;

Example 2: 	used to display the customer’s full name, booking number, start date, hotel name and resort
name of all customers who has an ‘h’ as the second letter of their surname. These details should be listed in alphabetical order of surname; customers with the same surname should be listed so that the customer with the earliest holiday should be listed first.

SELECT firstname, surname, bookingNo, hotelName, resortName, startDate
FROM Customer, Booking, Hotel, Resort
WHERE Customer.[customer#]=Booking.[customer#] AND Booking.hotelRef=Hotel.hotelRef AND Hotel.resortID=Resort.resortID AND surname LIKE ‘_h%’
ORDER BY surname ASC, startDate ASC;

• Aggregate functions:-	Aggregate functions operate on a set of rows to return a single, statistical value.
You apply an aggregate to a set of rows, which may be:

 all the rows in a table
 only those rows specified by a WHERE clause
 those rows created by a GROUP BY clause (see later)

The most common aggregate functions used are listed below:

	Function
	Description

	AVG()
	returns the average value of a numeric column or expression

	COUNT()
	returns the number of rows that match the criteria in the WHERE clause

	MAX()
	returns the largest value of the selected column or expression

	MIN()
	returns the smallest value of the selected column or expression

	SUM()
	returns the total sum of a numeric column or expression

In the same way that pre-defined programming functions receive parameter values, SQL aggregate functions require an expression. This expression is usually a column name but it can be a column name together with an operator.

The following points should be noted:

 	SUM() and AVG() can only be applied to numeric data types; MIN() and
MAX() work with characters, numeric, and date/time datatypes; COUNT() works with all data types.

 	All aggregate functions except, COUNT(), ignore nulls.

	COUNT() always returns a positive integer or zero. The other aggregate functions return null if the set contains no rows or contains rows with only nulls.

	An aggregate expression cannot be used in a WHERE clause.

	It is possible to use more than one aggregate expression in a SELECT statement as shown here:

Example 1		SELECT MIN(price), MAX(price)
FROM Product;

 	Mixing non-aggregate and aggregate expressions in a SELECT statement is not
permitted. A SELECT statement must contain either all non-aggregate expressions or all aggregate expressions. The query below is illegal, as it mixes non-aggregate productName with the aggregate function MAX.

Example 2		SELECT productName, MAX(price)
FROM Product;

Example 3: 		uses readable headings to display the cheapest and dearest price per night.

SELECT MIN(pricePersonNight) AS [Cheapest Price per Night], MAX(pricePersonNight) AS [Dearest Price perNight]
FROM Hotel;

Example 4: 		used to display the average number of nights booked.

SELECT ROUND(AVG(numberNights),2)
FROM Booking;

Note: the SQL ROUND() function is used to round the average to 2 decimal places.

Example 5: 		used to display a list of the different types of resort together with the number of resorts in
each of those categories.

SELECT resortType, COUNT(*)
FROM Resort
GROUP BY resortType;

Example 6: 		uses a readable heading to display the total number of people booked into a hotel in July.

SELECT SUM(numberInParty) AS [People on holiday in July]
FROM Booking
WHERE startDate LIKE '*/07/*’;

• Computed values
with aliases:-	Arithmetic expressions can be used to compute values as part of a SELECT query. The arithmetic expressions can contain column names, numeric numbers, and arithmetic operators.

Whenever a value is generated by a query, it is allocated its own column in the query answer table. A computed value is temporary — it only exists within the query. Because of this, computed values are not stored in the database, which eliminates the need to store data that can be computed at run-time.

An alias can be used to give any column in an answer table a temporary name. Doing this makes the headings in the answer table more readable. Since it is generated at run-time, an alias only exists for the duration of the query. An alias is listed in the SELECT list by using the AS statement.

For example, the query below will display the name, price, quantity and cost of each product in a specified order:

SELECT productName AS ['Product Name'], price, quantity, price*quantity
FROM Product, Order
WHERE Product.productID = [Order].productID AND order# = 123456;

Executing the query produces the answer table below:

	Product Name
	price
	quantity
	price*quantity

	Oven cleaner
	3.45
	3
	10.35

	Carpet cleaner
	4.16
	2
	8.32

	Bleach
	1.99
	5
	9.95

We can make the answer table more readable by using an alias:

SELECT productName AS ['Product Name'], price, quantity, price*quantity AS ['Product Cost']
FROM Product, Order
WHERE Product.productID = [Order].productID AND order# = 123456;

Executing the updated query produces the answer table below:

	Product Name
	price
	quantity
	Product Cost

	Oven cleaner
	3.45
	3
	10.35

	Carpet cleaner
	4.16
	2
	8.32

	Bleach
	1.99
	5
	9.95

The column headings in this second answer table are more readable than those in the first answer table, due to the use of aliases in the second query.

GROUP BY:-	The GROUP BY clause is used in a SELECT to form sets (or groups) of records. It does this by gathering together all records that have identical data in the specified column(s).

When used with an aggregate function, GROUP BY ensures that one result is returned for each set of grouped records. This makes it possible to mix non-aggregate and aggregate expressions for grouping columns; without GROUP BY, this is not possible.

For example, the query shown below is used to display a list of product categories together with the dearest product in each of those categories. The category with the cheapest product is listed first.

SELECT productCategory, MAX(price)
FROM Product
GROUP BY productCategory
ORDER BY MAX(price) ASC;

Note: 	whenever a single query has both GROUP BY and ORDER BY clauses, the GROUP BY clause always precedes the ORDER BY clause. If the clauses are reversed, a syntax error will be generated.

Example 7:		use to display the number of bookings for hotels in coastal resorts. Show the resort type
and use a readable heading for the results returned by the aggregate function.

SELECT resortType, COUNT(*) AS [Number of Bookings]
FROM Resort, Hotel, Booking
WHERE Resort.resortID = Hotel.resortID AND Hotel.hotelRef = Booking.hotelRef AND resortType = ‘coastal’
GROUP BY resortType;

Example 8:		use to display a list of each type of meal plan together with the number of bookings made
for each of those meal plans. The details should be listed from least popular meal plan to most popular.

SELECT mealPlan, COUNT(*)
FROM Hotel, Booking
WHERE Hotel.hotelRef = Booking.hotelRef
GROUP BY mealPlan
ORDER BY COUNT(*) ASC;

Note: 		the sequencing of the GROUP BY and ORDER BY clauses.

UPDATE:-		query used to edit more than one field

The UPDATE query is used at National 5 to edit the value(s) stored in one field of a database table. For example:

UPDATE Product
SET price = price * 1.10
WHERE productName LIKE ‘D%’;

This query will increase the price of every product, with a name that begins with the letter D, by 10%.

At Higher level, you are required to use a single query to change the values stored in more than one field of a database query. The general syntax of this UPDATE query is:

UPDATE tableName
SET field1 TO expression, field2 TO expression, … … …
WHERE criteria to be matched;

Note: 		each expression used in the SET clause can be a specific value or an
expression (which can, if required, use arithmetic operators). The WHERE clause is optional.

Example 9: 		customer Omar Shaheed has moved. Use an UPDATE query to edit his details (his new
address is provided below):

	New Address
	31 Pike Place

	New Postcode
	PH31 31P

UPDATE Customer
SET address = ‘31 Pike Place’, postcode = ‘PH31 31P’
WHERE firstname = ‘Omar’ AND surname = ‘Shaheed’;

Example 10:		all the hotels in Fort William (hotel references starting with the letters FW) have gained
an extra star and have increased the price per night by 4%. Edit the relevant details in the database.

UPDATE Hotel
SET pricePersonNight = ROUND(pricePerNight * 1.04,2), starRating = starRating + 1
WHERE hotelRef LIKE ‘FW*’;

• Order By:-		Done at NAT 5
		Sorts records in an order

			e.g. 	SELECT * FROM pupils
				ORDER BY surname ASC, forename DESC;

• Where:-		Done at NAT 5
			Used for searching purposes

	e.g.	SELECT * FROM pupils
		WHERE surname = ‘Smith’;

At higher level you will be expected to combine several of these commands using several tables

	Remember:-		the computer needs to be told the file as well as the field if the field name is
not unique e.g. Primary & Foreign keys

					filename.fieldname

	e.g.		SELECT * FROM PUPILS, REG_CLASSES
WHERE reg_classes.reg_class = pupils.reg_class AND
pupils.reg_class = ‘4.1’
			ORDER BY pupils.surname ASC;

d)	Testing

As with any product, a database should be tested before being put out to general use.
This can be done using usability testing.

Usability testing:-	A selected group of users will use and evaluate the product, (DB).
				Usually a common series of tasks are given to all users.
				Feedback given from the users will determine what action developers will take to
				improve the product, (DB).

			e.g.	Do the SQL scripts work?
Are the calculated/summary fields correct?
Can the DB produce the required reports?

e)	Evaluation

A database should be evaluated using the following terms:-

• Fitness for Purpose:-	Does it do what it was designed to do?

• Accuracy of Output:-	Does it produce the data is was designed to produce, (reports), in a format which
is easily accessible, (grouped and sorted in a logical order).

21

image4.tiff
A sample record stored in each table is shown below:

Hotel table

hotelRef AY72
hotelName Cliff Top
resortlD 168
starRating 3
seasonStartDate | 29/04/2018
swimmingPool False
mealPlan Half Board
checkInTime 14:30
pricePersonNight | 58.99
Booking table

bookingNo 134
customer# 426
hotelRef AY72
startDate 30/04/2018
numberNights 7
numberlnParty 3

Resort table

resortlD 168
resortName Ayr
resortType Coastal
trainStation True
Customer table

customer# 426
firstname Omar
surname Shaheed
address 26a High Bridge
town Perth
postcode PH12 34X

Note: these solutions have been tested in MS Access, therefore the wildcards
used are ? and *. The field customer# is enclosed in square brackets to avoid

syntax errors.

image1.gif
Employees Report

Firstame LastHame Gender Birth Date
Naney Davelio F 08-Dec-1988
Andrew Fuller W 19-Feb-1952
Janet Leverling F 30-Au5-1983
Margaret Peacock F 19-9ep-1058
Steven Buchanan W 04-Mar-1955
Michael Suyama M 02.Ju1963
Robert King M 20-May-1960
Lawa Callahan F 09-Jan-1058
Anne Dadsworth F 02.Ju1969
Male Employees: 4

Femae Employees: 5

image2.tiff
[23 Hoter'\ T Resort\

% hotelRef # |resortiD
hotelName resortName
resortlD resortType
starRating trainStation
seasonStartDate
swimmingPool
mealPlan

checkinTime
pricePersonNight

| Booking | | customer\

© FeldName © FeldName
| bookingNo ¥ | customer#

customer# firstname

hotelRef surname

startDate address

numberNights town

numberinParty postcode

image3.tiff
Hotel \,
© FieldName

? |hotelRref
hotelName
resortiD
starRating
seasonStartDate
swimmingPool
mealPlan
checkinTime
pricePersonNight

?

?

resortlD
resortName
resortType
trainStation

customer#
firstname
surname
address
town

postcode

|j Boolnng
~ FieldName

? | bookingNo

customer#

hotelRef

startDate

numberNights

numberlnParty

