Technological Studies Data Booklet Standard Grade and Intermediate 2

For use in National Qualification Courses
leading to the 2007 examinations and beyond.

Published date: December 2006
Publication code: BB3377
ISBN: 9781859696767
Published by the Scottish Qualifications Authority
The Optima Building, 58 Robertson Street, Glasgow G2 8DQ
Ironmills Road, Dalkeith, Midlothian EH22 1LE
www.sqa.org.uk

For an up-to-date list of prices visit the Publication Sales and Downloads section of SQA's website.

This document can be produced, on request, in alternative formats, including large type, braille and numerous community languages.
For further details telephone SQA's Customer Contact Centre on 08452791000.

Contents

Preface 1
Quantities, Symbols and Units 2
Decimal Prefixes 3
Relationships 4
Pneumatic Systems 4
Energy and Power 5-6
Mechanical Systems 7
Electrical/Electronic 8
Resistor Colour Code 9
7400 series IC Pinout Diagrams 10
Graphs for Thermistors and LDR 11
Thermistors 11
Light Dependant Resistor (LDR) 12
Binary Weighting of Data Lines 13
Symbols for Flowcharts 14
PBASIC Instruction Set 15

Preface

This data booklet is intended for use by candidates in examinations in Technological Studies at Standard Grade and Intermediate 2. It is recommended that candidates should become familiar with the contents of the data booklet through use in undertaking units of these courses.

It should be noted that the range of data contained in the booklet has been limited to that syllabus content which may be assessed through written examination papers. This range should be supplemented by other resource material as necessary during the course, eg by using data sheets. However, should any additional information (or data not included in this booklet) be required in an examination, such information will be included in the examination paper.

Teachers/lecturers should note that all of the material contained in this booklet is likely to be examined at some time. This excludes the additional PBASIC commands listed on page 15 . With regard to tables of information, not every entry in a table will necessarily be involved in examination questions.

From the variety of data offered in this booklet, candidates will be expected to demonstrate the ability to select an appropriate:

- item of information
- formulae
- material property
- operational amplifier circuit
- PBASIC instruction

Quantities, Symbols and Units

Quantity	Symbol	Unit	Abbreviation
distance	s, x	metre	m
height	h	metre	m
diameter	d	metre	m
radius	r	metre	m
area	a	square metre	m^{2}
circumference	c	metre	m
time	t	second	s
speed, velocity	v	metre per second	m / s
mass	m	kilogram	kg
weight	W	newton	N
force	F	newton	N
gravitational acceleration	g	metres per second squared	$\mathrm{m} / \mathrm{s}^{2}$
work done	W or E_{w}	joule	J
energy	E	joule	J
power	P	watt	W
torque	T	newton metre	Nm
efficiency	η	-	-
pressure	P	newton per square metre	$\mathrm{N} / \mathrm{m}^{2}$
temperature	T	degree celsius kelvin	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~K} \end{gathered}$
specific heat capacity	c	joule per kilogram degree kelvin	J/kgK
voltage, potential difference	V	volt	V
current	I	Ampere (amp)	A
resistance	R	ohm	Ω
transistor current gain	$h_{F E}$	-	-
frequency	f	hertz	Hz
capacitance	C	farad	F

Decimal Prefixes

Prefix	Symbol	Multiplying factor
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

Relationships

Pneumatic Systems

Pressure, force \& area

$$
\mathrm{P}=\frac{\mathrm{F}}{\mathrm{~A}}
$$

Area of circle

$$
\begin{aligned}
\mathrm{A} & =\frac{\pi \mathrm{d}^{2}}{4} \\
\mathrm{~d}=\sqrt{\frac{4 \mathrm{~A}}{\pi}} & \\
& \pi=3.14
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}=\pi \mathrm{r}^{2} \\
& \mathrm{r}=\sqrt{\frac{\mathrm{A}}{\pi}}
\end{aligned}
$$

Energy and Power

Potential energy

$$
\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}
$$

$$
\mathrm{g}=9 \cdot 81 \mathrm{~m} / \mathrm{s}^{2}
$$

Kinetic energy

$$
\begin{aligned}
\mathrm{E}_{\mathrm{k}} & =\frac{1}{2} \mathrm{mv}^{2} \\
\mathrm{v} & =\sqrt{\frac{2 \mathrm{E}_{\mathrm{k}}}{\mathrm{~m}}}
\end{aligned}
$$

Strain energy

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{s}}=\frac{1}{2} \mathrm{Fx} \\
& \mathrm{~F}=\frac{2 \mathrm{E}_{\mathrm{s}}}{\mathrm{x}} \\
& \mathrm{x}=\frac{2 \mathrm{E}_{\mathrm{s}}}{\mathrm{~F}}
\end{aligned}
$$

Electrical energy
$\mathrm{E}_{\mathrm{e}}=\mathrm{VIt}$

Heat energy

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{h}}=\mathrm{cm} \Delta \mathrm{~T} \\
& \mathrm{c}_{\text {water }}=4190 \mathrm{~J} / \mathrm{kgK}
\end{aligned}
$$

Work done
$\mathrm{W}=\mathrm{Fs}$

Power
$P=\frac{E}{t}$ or $\frac{W}{t}$

Electrical power

$$
\begin{aligned}
& \mathrm{P}=\mathrm{VI} \text { or } \frac{\mathrm{V}^{2}}{\mathrm{R}} \text { or } \mathrm{I}^{2} \mathrm{R} \\
& \mathrm{~V}=\sqrt{\mathrm{PR}} \\
& \mathrm{I}=\sqrt{\frac{\mathrm{P}}{\mathrm{R}}}
\end{aligned}
$$

Mechanical power

$$
\mathrm{P}=\mathrm{Fv}
$$

$\pi=3 \cdot 14$
n is number of rev/s

Efficiency

$$
\eta=\frac{\text { Output Energy }}{\text { Input Energy }}
$$

$\eta=\frac{\text { Output Power }}{\text { Input Power }}$

Mechanical Systems

Mechanical Advantage
$M A=\frac{\text { Load }}{\text { Effort }}$

Velocity Ratio
$\mathrm{VR}=\frac{\text { driver }}{\text { driven }}$

Torque
$\mathrm{T}=\mathrm{Fr}$

Efficiency
$\eta=\frac{\text { MA }}{\text { VR }}$

Circumference of circle
$\mathrm{c}=\pi \mathrm{d}$
π is 3.14

Moment of force
$\mathrm{M}=\mathrm{F} x$
x is the perpendicular distance

Principle of moments

$$
\begin{aligned}
& \Sigma \mathrm{M}=0 \quad \text { or } \\
& \Sigma \mathrm{CWM}=\Sigma \mathrm{ACWM}
\end{aligned}
$$

Conditions of equilibrium

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{h}}=0 \\
& \Sigma \mathrm{~F}_{\mathrm{v}}=0 \\
& \Sigma \mathrm{M}=0
\end{aligned}
$$

Electrical/Electronic

Ohm's law

$$
\mathrm{V}=\mathrm{IR}
$$

Resistors in series
$\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \ldots$

Resistors in parallel
$\frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}$
for 2 resistors in parallel
$\mathrm{R}_{\mathrm{t}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}$

Kirchoff's 1st Law
(parallel branch)

Kirchoff's 2nd Law
(series circuit)

Voltage Divider
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{\mathrm{s}}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{\mathrm{t}}} \quad$ or $\quad \mathrm{V}_{1}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{\mathrm{t}}} \times \mathrm{V}_{\mathrm{s}}$

Bi-polar transistor gain

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{FE}}=\frac{\mathrm{I}_{\text {collector }}\left(\mathrm{I}_{\mathrm{c}}\right)}{\mathrm{I}_{\text {base }}\left(\mathrm{I}_{\mathrm{b}}\right)} \\
& \\
& \mathrm{I}_{\mathrm{e}} \approx \mathrm{I}_{\mathrm{c}}
\end{aligned}
$$

Saturated Transistor
$\mathrm{V}_{\mathrm{be}}=0.7 \mathrm{~V}$

Resistor Colour Coding

4 Band Resistor Colour Code Layout

1st and 2nd Colour Band	Digit	Multiplier
Black	0	$\times 1$
Brown	1	$\times 10$
Red	2	$\times 100$
Orange	3	$\times 1000$ or 1 k
Yellow	4	$\times 10000$ or 10 k
Green	5	$\times 100000$ or 100 k
Blue	6	$\times 1000000$ or 1 M
Violet	7	Silver is divide by 100
Grey	8	Gold is divide by 10
White	9	Tolerances: - Brown 1\% - Red 2% - Gold 5\% - Silver 10% - None 20\%

7400 series IC Pinout Diagrams

7402

7404

7408

7432

Graphs for Thermistors and LDR

Thermistors

Light Dependent Resistor (LDR)

Binary Weighting of Data Lines

bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
weighting	$\mathbf{1 2 8}$	$\mathbf{6 4}$	$\mathbf{3 2}$	$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$

Decimal to Binary conversion

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Symbols for Flowcharts

Terminator symbol

Used for the start and end of a main program.

Line symbol

Input/Output

Decision symbol

Sub procedure symbol
Used to control outputs or to show that data is being received.

Used for operations which take place within the microcontroller, for example a delay.

Program flow is determined by a "yes" or "no" answer to the question in the box.

Entry to or exit from a sub-procedure.

PBASIC Instruction Set

PBASIC Instruction	Explanation
symbol	Allocate a name to a pin or variable
let	Allocate variables using mathematic equations
INPUT/OUTPUT	
high x	Set pin " x " high
low x	Set pin " x " low
dirs	Set pins on PORTB to input or output
pins	Set level of all pins at once
sensor	Converts analogue input (A or B) into a scaled value 1-240
TIME	
pause n	Create a time delay of n in milliseconds (0-65535)
PROGRAM FLOW	
goto label	Jump to label
gosub label	Jump to sub-procedure at label
return	Return from sub-procedure
if then label	If a condition is met, jump to a label (but not a sub-procedure)
for $\ldots \ldots . .$. next	Set a loop which repeats a specific number of times
end	End program

The default number system is decimal.
For binary numbers, the prefix " $\%$ " is used.

Variables

The byte variables (b0-b13) can store values between 0 and 255.
The word variables (w0-w5) can store values between 0 and 65535 ; w0 contains b0 and b1 within it; w1 contains b2 and b3 within it etc.

