

These sheets belong to

## Imtroductiom

This is the second of two booklets I've written to help teach the calculations for National 5 Chemistry as taught in Scotland. The first booklet described the methods for these calculations and gave a few 'Self-Check' problems.

This 2nd booklet will be questions extracted from previous exam papers (N5, Standard Grade \& Intermediate 2) to show the questions in context.

CfE (new courses) calculations are now marked in a different way with extra emphasis placed on the "Concept" (correct formula chosen and values inserted). Only if the Concept is correct will marks be awarded for correct Arithmetic.

Though full marks may be awarded for correct answer (with no working shown) on assumption that pupil must have used correct concepts, it would be better to show working in order to avoid getting zero marks.

Units are important ( $\%$, $g$, moles, mol $l^{-1}$ ) but to avoid drastic penalisation most (but not all) questions will include the required units in question. Therefore you do not always need to give the units but you will be penalised if you give wrong units.

## 1. Formula Mass

## 3. Molar Mass (gfm)

## 4. Molar Calculations

$n=\frac{m}{G F M}$

## 5. Using Balanced Equations

## 6. Concentration of Solutions <br> $n=C V$

## 7. Titrations

$$
\frac{C_{1} V_{1}}{n_{1}}=\frac{C_{2} V_{2}}{n_{2}}
$$

## Chemrisitry Cailculuationss

Q1 Urea, $\mathrm{H}_{2} \mathrm{NCONH}_{2}$, can be used as a fertiliser.
$\begin{array}{ll}\text { (a) Calculate the percentage of nitrogen in urea. } & 3 \\ \text { Show your working clearly. }\end{array}$

Q2 Ores are naturally occurring compounds from which metals can be extracted.
(b) Iron can be extracted from its ore haematite, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, in a blast furnace. Calculate the percentage by mass of iron in haematite.

Show your working clearly.

Q3 Metals can be extracted from their ores by different methods.
(a) Place the following methods in the correct space in the table.

You may wish to use the data booklet to help you.
reacting with carbon
electrolysis
heat alone

| Metal | Method |
| :---: | :---: |
| mercury |  |
| iron |  |
| magnesium |  |

(b) Mercury can be extracted from the ore cinnabar, $\mathbf{H g S}$.
(i) Calculate the percentage by mass of mercury in cinnabar.

Q4 Potassium hydroxide reacts with sulphuric acid to form potassium sulphate, which can be used as a fertiliser.
$\mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad+\quad \mathrm{H}_{2} \mathrm{O}(\ell)$
(a) Balance the above equation.
(b) Name the type of chemical reaction taking place.
$\qquad$
(c) Calculate the percentage, by mass, of potassium in potassium sulphate, $\mathrm{K}_{2} \mathrm{SO}_{4}$.

Show your working clearly.

Q5 Read the passage below and answer the questions that follow.

## Potassium - The Super Element

Potassium is an essential element for almost all living things. The human body requires a regular intake of potassium because humans have no mechanism for storing it. Foods rich in potassium include raisins and almonds. Raisins contain 0.86 g of potassium in every 100 g .

Naturally occurring salts of potassium such as saltpetre (potassium nitrate) and potash (potassium carbonate) have been known for centuries. Potassium salts are used as fertilisers.

Potassium was first isolated by Humphry Davy in 1807. Davy observed that when potassium was added to water it formed globules which skimmed about on the surface, burning with a coloured flame and forming an alkaline solution.
(a) State why the human body requires a regular intake of potassium.
(b) Calculate the number of moles of potassium in 100 g of raisins.

Show your working clearly.
Q6 Dishwasher tablets contain many different types of chemicals.

(a) A dishwasher tablet was found to contain 1.57 g of the bleaching agent, sodium percarbonate.
How many moles are there in 1.57 g of sodium percarbonate?
$($ Formula mass of sodium percarbonate $=157$.)
Q7 Rhubarb contains oxalic acid, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$.

(c) A strip of rhubarb was found to contain 1.8 g of oxalic acid.

How many moles of oxalic acid, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$, are contained in 1.8 g .
(Formula mass of oxalic acid $=90$ )

Q8 The concentration of chloride ions in water affects the ability of some plants to grow.

A student investigated the concentration of chloride ions in the water at various points along the river Tay.

The concentration of chloride ions in water can be determined by reacting the chloride ions with silver ions.

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})
$$

A $20 \mathrm{~cm}^{3}$ water sample gave a precipitate of silver chloride with a mass of 1.435 g .
(a) Calculate the number of moles of silver chloride, AgCl , present in this sample.
Show your working clearly.
(b) Using your answer to part (a), calculate the concentration, in $\mathrm{moll}^{-1}$, of chloride ions in this sample.

Show your working clearly.
Q9 A student was asked to carry out an experiment to determine the concentration of a copper(II) sulfate solution.

Part of the work card used is shown.
Determination of the Concentration of Copper(II) Sulfate Solution

1. Weigh an empty crucible
2. Add $100 \mathrm{~cm}^{3}$ copper(II) sulfate solution
3. Evaporate the solution to dryness
4. Weigh the crucible containing dry copper(II) sulfate
(a) Suggest how the student could have evaporated the solution to dryness.
(b) The student found that the $100 \mathrm{~cm}^{3}$ solution contained 3.19 g of copper(II) sulfate, $\mathrm{CuSO}_{4}$.
Calculate the concentration of the solution in $\mathrm{moll}^{-1}$.
Show your working clearly.
Q10 Vinegar is an aqueous solution of ethanoic acid.
(a) A vinegar contains 6 g of ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, in $100 \mathrm{~cm}^{3}$ of solution.
Calculate the concentration in $\mathrm{mol} \mathrm{l}^{-1}$ of this solution?

Q11 Rust, iron(III) oxide, that forms on cars can be treated using rust remover which contains phosphoric acid.


When painted on, rust remover changes iron(III) oxide into iron(III) phosphate.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \longrightarrow 2 \mathrm{FePO}_{4}+3 \mathrm{H}_{2} \mathrm{O}
$$

(a) The rust remover contains $250 \mathrm{~cm}^{3}$ of $2 \mathrm{moll}^{-1}$ phosphoric acid.
(i) Calculate the number of moles of phosphoric acid in the rust remover.
(ii) Using your answer in part (i), calculate the mass of iron(III) oxide that will be removed by $250 \mathrm{~cm}^{3}$ of $2 \mathrm{moll}^{-1}$ phosphoric acid.

Q12 (b) Another experiment involved determining the concentration of sodium carbonate solution by titration.


The results showed that $20 \mathrm{~cm}^{3}$ of sulphuric acid was required to neutralise the sodium carbonate solution.
(i) Calculate the number of moles of sulphuric acid in this volume.
(ii) One mole of sulphuric acid reacts with one mole of sodium carbonate.

Using your answer from part $(b)(i)$, calculate the concentration, in $\mathrm{mol} / \mathrm{l}$, of the sodium carbonate solution.

Q13 (b) Nonane burns to produce carbon dioxide and water.

$$
\mathrm{C}_{9} \mathrm{H}_{20}+14 \mathrm{O}_{2} \longrightarrow 9 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

Calculate the mass, in grams, of carbon dioxide produced when 32 g of nonane is burned.

Show your working clearly.
Q14 A student investigated the reaction of carbonates with dilute hydrochloric acid.
(b) In another reaction 1 g of calcium carbonate reacted with excess dilute hydrochloric acid.
$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
(i) Calculate the mass, in grams, of carbon dioxide produced.

Q15 Nitrogen trifluoride, $\mathrm{NF}_{3}$, is used in the manufacture of plasma screens.
(c) The equation for the formation of nitrogen trifluoride, $\mathrm{NF}_{3}$, is:

$$
\mathrm{N}_{2}+3 \mathrm{~F}_{2} \longrightarrow 2 \mathrm{NF}_{3}
$$

Calculate the mass of nitrogen trifluoride produced from 7 g of nitrogen.
Show your working clearly.

Q16 Ammonium sulphate is a commonly used fertiliser. It can be produced by the reaction between ammonium carbonate and calcium sulphate.

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{CaSO}_{4}(\mathrm{aq}) \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s})
$$

(a) Name this type of chemical reaction.
$\qquad$
(b) What mass of ammonium carbonate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$, would be needed to make $13 \cdot 2 \mathrm{~kg}$ of ammonium sulphate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ ?

Q17 Ammonia is a compound of nitrogen and hydrogen.
(c) Ammonia, a weak base, can be used to make the fertiliser ammonium phosphate.

$$
3 \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}
$$

(ii) Calculate the mass of ammonium phosphate that would be produced from 510 g of ammonia.

Q18 Fats and oils are examples of esters. The structure of the fat glyceryl tristearate is shown below.
(c) The equation below shows the breakdown of glyceryl tristearate to form glycerol and stearic acid.
$\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}$
glyceryl tristearate
GFM $=890 \mathrm{~g}$

Calculate the mass of stearic acid produced from 8.9 g of glyceryl tristearate.

Q19 (b) Silver tarnishes in air forming black silver sulphide, $\mathrm{Ag}_{2} \mathrm{~S}$.

The equation for the reaction is:

$$
4 \mathrm{Ag}+2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{Ag}_{2} \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}
$$

What mass of silver sulphide would be formed from 1.08 g of silver?

Q20 (b) The equation for the reaction is:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

In the experiment $50 \mathrm{~cm}^{3}$ of sodium hydroxide solution reacted with $20 \mathrm{~cm}^{3} 0 \cdot 1 \mathrm{moll}^{-1}$ dilute sulphuric acid.

Calculate the concentration of the sodium hydroxide solution.

Q21 Vitamin C is found in fruits and vegetables.
Using iodine solution, a student carried out titrations to determine the concentration of vitamin $C$ in orange juice.


The results of the titration are given in the table.

| Titration | Initial burette <br> reading $\left(\mathrm{cm}^{3}\right)$ | Final burette <br> reading $\left(\mathrm{cm}^{3}\right)$ | Titre <br> $\left(\mathrm{cm}^{3}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | $1 \cdot 2$ | 18.0 | 16.8 |
| 2 | 18.0 | 33.9 | $15 \cdot 9$ |
| 3 | 0.5 | 16.6 | 16.1 |

(a) Calculate the average volume, in $\mathrm{cm}^{3}$, that should be used in calculating the concentration of vitamin C .
(b) The equation for the reaction is

$$
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}(\mathrm{aq})+2 \mathrm{HI}(\mathrm{aq})
$$

vitamin C
Calculate the concentration, in $\mathrm{mol} \mathrm{l}^{-1}$, of vitamin C in the orange juice.
Show your working clearly.

Q22 Sodium carbonate solution can be added to the water in swimming pools to neutralise the acidic effects of chlorine.
A student carried out a titration experiment to determine the concentration of a sodium carbonate solution.


|  | Rough <br> titre | 1 st <br> titre | 2nd <br> titre |
| :--- | :---: | :---: | :---: |
| Initial burette <br> reading $\left(\mathrm{cm}^{3}\right)$ | 0.0 | 0.0 | 0.0 |
| Final burette <br> reading $\left(\mathrm{cm}^{3}\right)$ | 16.5 | 15.9 | 16.1 |
| Volume used <br> $\left(\mathrm{cm}^{3}\right)$ | 16.5 | 15.9 | 16.1 |


$10 \mathrm{~cm}^{3}$
sodium carbonate
solution and indicator
(a) Using the results in the table, calculate the average volume, in $\mathrm{cm}^{3}$, of hydrochloric acid required to neutralise the sodium carbonate solution.
(b) The equation for the reaction is

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Using your answer from part (a) calculate the concentration, in mol la of the sodium carbonate solution.

Show your working clearly.
(c) (continued)

Using bromine solution, a student carried out titrations to determine the concentration of limonene in a household cleaner.


| Titration | Initial burette <br> reading $\left(\mathbf{c m}^{\mathbf{3}} \mathbf{)}\right.$ | Final burette <br> reading $\left(\mathbf{c m}^{\mathbf{3}} \mathbf{)}\right.$ | Titre (cm ${ }^{\mathbf{3}} \mathbf{)}$ |
| :---: | :---: | :---: | :---: |
| 1 | $0 \cdot 5$ | $17 \cdot 1$ | $16 \cdot 6$ |
| 2 | $0 \cdot 2$ | $16 \cdot 3$ | $16 \cdot 1$ |
| 3 | $0 \cdot 1$ | $16 \cdot 0$ | $15 \cdot 9$ |

(i) What colour change would be seen in the flask that indicates the end point of the titrations?
$\qquad$
(ii) What average volume should be used in calculating the concentration of limonene?
$\qquad$ $\mathrm{cm}^{3}$
(iii) The equation for the reaction between limonene and bromine solution is shown.

$$
\mathrm{C}_{10} \mathrm{H}_{16}(\mathrm{aq})+2 \mathrm{Br}_{2}(\mathrm{aq}) \longrightarrow \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{Br}_{4}(\mathrm{aq})
$$

Calculate the concentration of limonene in the household cleaner.

## Page 3

| Q1 | a | gfm $=60$ 1 mark <br> $28 / 60 \times 100$ 1 mark <br> Final answer $46.6 \%$ 1 mark <br> $46 \cdot 6 / 46.7 / 47$ on its own 3 marks  | 3 | Allow follow through from incorrect gfm <br> Do not allow 46 on its own |
| :---: | :---: | :---: | :---: | :---: |

Page 3


Page 3

| Question | Acceptable Answers | Mark | Unacceptabl |
| :---: | :---: | :---: | :---: |
| Q3 a | Heat alone (Reacting with) carbon Electrolysis | 1 or 0 |  |
| Q3 b i | $\begin{aligned} & \mathrm{FM}=232 \cdot 5(1) \\ & 200 \cdot 5 / 232 \cdot 5 \times 100=86 \cdot 2 \% \text { or } 86 \%(1) \end{aligned}$ <br> $86 \cdot 2 \%$ or $86 \%$ on its own 2 marks <br> Use of atomic numbers max 1 mark, must have working to gain the mark, $83 \cdot 3 \%$ <br> Incorrect rounding (with working) -(1/2) <br> Metal other than Hg max 1 mark | 2 |  |

Page 3

| Question | Acceptable Answer | Mark | Unacceptable Answer |
| :---: | :---: | :---: | :---: |
| Q4 (a) | $2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ <br> Or correct multiples | 1 |  |
| (b) | neutralisation | 1 |  |
| (c) | $\mathrm{FM}=174 \mathrm{~g}$ (1 mark) <br> $78 / 174 \times 100=44.8$ (1 mark) <br> 44.8 or 45 on its own 2 marks <br> Deduct $1 / 2$ mark for arithmetic error <br> Using atomic numbers $44 \%$ (max 1 mark) 44 must have working <br> If use mass of one potassium max 1 mark <br> If use S or O max 1 mark | 2 | 44 on its own zero <br> If use element not in potassium sulphate - zero marks |

Page 4


Page 4

| Q6 | a | $\frac{1.57}{157}=0.01$ moles <br> 0.01 moles on its own | 1 | $1 / 2$ mark - working only $\frac{1.57}{157}$ <br> $1 / 2$ mark arithmetic error |
| :---: | :---: | :---: | :---: | :---: |



Page 5

| Q8 | a | $g f m 143.5 \mathrm{~g}$ 1 mark <br> $1.435 / 143.5=0.01 \mathrm{~mol}$ 1 mark <br> 0.01 mol on its own 2 marks | 2 | Allow follow through if gfm incorrect |
| :---: | :---: | :---: | :---: | :---: |
| Q8 | b | Answer from part (a) / 0.02 1 mark <br> Correct answer 1 mark <br> $0.01 / 0.02$ 1 mark <br> $=0.5 \mathrm{~mol} \mathrm{l}^{-1}$ 1 mark <br> $0.5 \mathrm{~mol} \mathrm{l}^{-1}$ on its own 2 marks | 2 | Allow follow through from answer to part (a) <br> If correct relationship but volume not converted to litres eg $0 \cdot 01 / 20$ max 1 Mark |

Page 5

| Question |  | Acceptable Answer(s) | Max Mark | 1/2 mark | Unacceptable |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q10 | a | gfm $=60 \mathrm{~g}$ $1 / 2$ <br> Moles $=6 / 60=0 \cdot 1$ (moles) $1 / 2$ <br> $C=0 \cdot 1 / 0 \cdot 1=1\left(\right.$ moll $\left.^{-1}\right)$ 1 <br>   <br> Accept follow through  <br>   <br> Minus $1 / 2$ mark arithmetic error  <br> correct working but incorrect answer  | 2 |  | $\frac{0.1}{100} \times 1000$ <br> Does not get $2^{\text {nd }}$ mark |

Page 5

| Que | tion | Answer | Max Mark | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| Q9 | (a) | Boil it or boil off the water or heat it or leave it for some time/overnight/next lesson or leave it on the window ledge or use Bunsen (burner) or appropriate diagram | 1 | Any mention of filtering negates the correct answer. Refer to General Marking Principle (g) for guidance. <br> Award zero marks for leave it with no indication of appropriate time or do nothing. <br> Award zero marks awarded for mention of burn or burning. This negates the correct answer. |
| Q9 | (b) | 0.2 with no working <br> Partial marking $\begin{equation*} 3 \cdot 19 / 159 \cdot 5=0.02 \tag{1} \end{equation*}$ <br> $0.02 / 0 \cdot 1=0.2$ <br> (this step on its own 2 marks) <br> or <br> ( $3 \cdot 19$ in $100 \mathrm{~cm}^{3}$ ) <br> 31.9 in $1000 \mathrm{~cm}^{3}$ or 1 litre $\begin{equation*} 31 \cdot 9 / 159 \cdot 5=0 \cdot 2 \tag{1} \end{equation*}$ <br> (this step on its own 2 marks) | 2 | Allow follow through from step 1 <br> Award 1 mark for $\begin{array}{lll} 0 \cdot 1 & -\gg & 3 \cdot 19 \\ 1 & \text {--> } & 31 \cdot 9 \end{array}$ <br> Zero marks are awarded for only showing $\mathrm{c}=\mathrm{n} / \mathrm{v}$ where the answer is not 0.2 <br> Unit is not required however if the wrong unit is given a maximum of 1 mark out of 2 can be awarded. <br> Accept $\mathrm{mol} \mathrm{l}^{-1}$ or mol/l ('L' in place of ' $l$ ') <br> Do not accept $\mathrm{mol} / \mathrm{l}^{-1}$ or $\mathrm{mol}^{-1}$ or moll |

## Page 6

| Question | Acceptable Answer | Mark | Worth 1 ² | Worth 0 |
| :---: | :---: | :---: | :---: | :---: |
| Q11 (a) <br> (ii) | $\begin{array}{ll} 2 \times 0.25 & 1 / 2  \tag{i}\\ =0.5 & 1 / 2 \end{array}$ <br> 0.5 no working 1 $\text { GFM Fe }{ }_{2} \mathrm{O}_{3}=160$ <br> Moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}=\frac{0.5}{2}=0.25$ <br> or mole ratio stated $\mathrm{Fe}_{2} \mathrm{O}_{3}: \mathrm{H}_{3} \mathrm{PO}_{4}$ <br> 1:2 $\begin{array}{rlr} \text { Mass of } \mathrm{Fe}_{2} \mathrm{O}_{3} & =0.25 \times 160 & 1 / 2 \\ & =40 & 1 / 2 \end{array}$ <br> Or 40 on its own (2) <br> Allow follow through using number of moles from part (i) if show working If atomic number is used instead of mass - max 1 mark <br> If use ratio $1: 180 \mathrm{~g} 1 \frac{1}{2}$ if show working | 1 | $2 \times 0.25 \text { only/ }$ <br> Arithmetic mistake | $\begin{aligned} & 2 \times 250=500 \\ & 2 / 250=0.008 \\ & \text { (will give } 0.64 \text { as follow } \\ & \text { through) } \\ & n=\text { cv no working } \end{aligned}$ |


| Question | Acceptable Answers | Mark | Unacceptable Answers |
| :---: | :---: | :---: | :---: |
| Q12 b i | $\begin{aligned} & (\mathrm{n}=\mathrm{c} \times \mathrm{V}) \\ & \mathrm{n}=0.05 \times 0.02(1 / 2) \\ & \mathrm{n}=\underline{0.001}(1 / 2) \end{aligned}$ <br> If $20 \mathrm{~cm}^{3}$ used in place of 0.02 | 1 | $\mathrm{n}=\mathrm{c} \times \mathrm{V}$ on its own <br> 1 on its own zero marks 0.01 on its own zero marks <br> $25 \mathrm{~cm}^{3}$ used as volume zero marks |
| Q12 b ii | Apply mole ratio 1:1 $\begin{align*} & 0.001 \longrightarrow 0.001  \tag{1/2}\\ & 0.001=c \times 0.025 \\ & c=\underline{0.04} \tag{1/22} \end{align*}$ <br> allow for follow through from (b) (i) <br> Don't penalise for non-conversion to litres here if already penalised in (b) (i) <br> PVC method can give an answer for $b$ (ii) even if $b$ (i) is wrong or blank ... if correct 1 mark for $b$ (ii) <br> If $25 \mathrm{~cm}^{3}$ used in place of $0.025 \quad(-1 / 2)$ mark Using wrong substance i.e. $0.020 \quad(-1 / 2)$ mark | 1 | $20 \mathrm{~cm}^{3}$ used as volume zero marks |

Page 7


| Q14 | a | ii | Li Cl formula/words/circled  <br> /highlighted in equation  <br> $1: 1$ ratio 1 mark <br> $0.01 \times 44=0.44$ 1 mark | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Units not required  <br> 1 mole gives 1 mole 1 mark <br> 100 g gives 44 g 1 mark <br> 1 g gives 44/100 $=0.44$ 1 mark <br> 0.44 on its own 3 marks |  |  |  |  |

## Page 7

| Question | Acceptable Answers | Mark | Unacceptable Answers |
| :---: | :---: | :---: | :---: |
| Q15 c | 1 mole $\mathrm{N}_{2}=28 \mathrm{~g}$ $7 / 28=0.25 \text { moles }(1 / 2)$ <br> 0.25 to 0.5 ( 1 mole to 2 moles) ( $1 / 2$ ) <br> 1 mole $\mathrm{NF}_{3}=71 \mathrm{~g}(1 / 2$ for both formula masses) $71 \times 0 \cdot 5=\underline{35 \cdot 5}(1 / 2)$ <br> $35 \cdot 5$ on its own 2 marks $\begin{aligned} & 1: \begin{array}{c} 1(1 / 2) \\ 28: 142(1 / 2) \\ 1 \longrightarrow 142 / 28(1 / 2) \\ 7 \longrightarrow 142 \times 7 / 28=\underline{35 \cdot 5}(1 / 2) \end{array} \\ & 7 \longrightarrow 10 . \end{aligned}$ <br> or any other acceptable method | 2 | Use of any atomic number maximum 1 mark if working is shown. <br> If no working is shown then zero marks. <br> (Possible answers using atomic numbers in one or both formula masses: $34 \mathrm{~g}, 71 \mathrm{~g}, 17 \mathrm{~g}$.) <br> Using $2 \mathrm{NF}_{3}$ as 2 N and 3 F to calculate FM (85) max 1 mark $\begin{aligned} & 28 \rightarrow 85 \\ & 7 \rightarrow 21 \cdot 25 \end{aligned}$ |


| Question | Acceptable Answer | Mark | Worth $1 / 2$ |
| :---: | :---: | :---: | :---: |
| Q16 (a) | Precipitation (ignore spelling) | 1 or 0 |  |
| (b) | $\begin{aligned} 1 \text { mole }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} & =132 \mathrm{~g} \\ \text { Moles of }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} & =\frac{13200}{132}=100 \mathrm{moles} 1 / 2 \\ \text { Moles of }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} & =100 \\ \text { Moles of }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} & =100 \times 96 \\ & =9600 \mathrm{~g} / 9.6 \mathrm{~kg} \end{aligned}$OR$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$  <br> 1 mole 1 mole $1 / 2$ <br> 96 g 132 g $1 / 2$ <br> $\frac{13200}{132} \times 96$ 13200 g  <br> $=9600 \mathrm{~g} / 9 \cdot 6 \mathrm{~kg}$  1$-1 / 2 \text { for } 9600 \mathrm{~kg}$ <br> 9600 g or 9.6 kg on its own -2 marks <br> accept working in grams and conversion to kg at end $13 \cdot 2 / 132=0 \cdot 1$ $0.1 \times 96=9.6 \mathrm{~kg}$ <br> no $1 / 2$ mark for GFM $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=96 \mathrm{~g}$ | 2 | $-1 / 2$ per arithmetic mistake <br> $-1 / 2$ for incorrect conversion to kg penalise once only <br> -1 if used atomic numbers <br> -1 if incorrect chemical or formula is used in calculation |

## Page 7



Page 8

| Q18 c |
| :--- | :--- | :--- | :--- | :--- |

Page 8

| Question | Acceptable Answer | Mark | Worth $1 / 2$ | Worth 0 |
| :---: | :---: | :---: | :---: | :---: |
| Q19 (b) | 4 moles to 2 moles $\begin{aligned} 4 \times 108 \mathrm{~g} & =2 \times 248 \\ 432 & =496 \\ 1.08 & =1.08 \times 496 / 432 \\ & =1.24 \end{aligned}$ <br> OR <br> no of moles of $\mathrm{Ag} \quad=1.08 / 108$ $=0.01 \mathrm{moles}$ <br> no of moles of $\mathrm{Ag}_{2} \mathrm{~S}=0.01 / 2$ $=0.005$ $\begin{aligned} \mathrm{GFM} \mathrm{Ag}_{2} \mathrm{~S} & =248 \\ \text { Mass of } \mathrm{Ag}_{2} \mathrm{~S} & =0.005 \times 248 \\ & =1.24 \end{aligned}$ <br> Ignore units/absence of units/ incorrect units given Check paper for indication of final answer. | $1 / 2$ <br> $1 / 2$ <br> 1 <br> $1 / 2$ <br> $1 / 2$ <br> 1 | $-1 / 2$ mark per arithmetic mistake, even if correct final answer is given -1 mark if atomic numbers are used -1 mark if incorrect chemical used in calculation | If they only have calculated the GFM for $\mathrm{Ag}_{2} \mathrm{~S}$ (as 248) |


| Question | Acceptable Answer | Mark | Worth $1 / 2$ |
| :---: | :---: | :---: | :---: |
| Q20 (b) | $\begin{aligned} \text { Moles of acid } & =\mathrm{C} \times \mathrm{V} \\ & =0.1 \times 0.02 \\ & =0.002 \end{aligned}$ <br> 1 mole to 2 moles <br> moles of $\mathrm{NaOH}=0.002 \times 2=0.004$ $\begin{aligned} \mathrm{c} & =\mathrm{n} / \mathrm{v} \\ & =0.004 / 0.05 \\ & =0.08 \end{aligned}$ <br> OR $\begin{aligned} \mathrm{H} \times \mathrm{C} \times \mathrm{V} & =\mathrm{OH} \times \mathrm{C} \times \mathrm{V} \\ 2 \times 0 \cdot 1 \times 20 & =1 \times \mathrm{C} \times 50 \\ 4 & =50 \mathrm{C} \\ \mathrm{C} & =4 / 50 \\ & =0.08 \end{aligned}$ <br> OR $\begin{aligned} & \frac{C_{A} V_{A}}{C_{B} V_{B}}=\underline{b} \\ & \frac{0.1 \times 20}{C_{B} \times 50}=\frac{1}{2} \\ & C_{B}=\frac{0.1 \times 20 \times 2}{50} \\ & =\frac{4}{50} \\ & =0.08 \end{aligned}$ |  | $-1 / 2$ per arithmetic error <br> $-1 / 2$ if $^{3} \mathrm{~cm}^{3}$ used instead of litres only in method 1 <br> $-1 / 2$ if $\mathrm{cm}^{3}$ and litres mixed in method $2 / 3$ |

Page 9


Page 10

| Que | tion | Answer | Max Mark | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| Q22 | (a) | 16 | 1 | Unit not required however if wrong unit given do not award mark for final answer. |
|  | (b) | 0.08 with no working <br> marks$0.1 \times 0.016=0.0016$ <br> $(1)$ <br> $0.0016 / 2=0.0008$ <br> $0.0008 / 0.01=0.08$ <br> 0.08 on its own 3 marks <br> or <br> $\frac{0.1 \times 16}{2}$ <br> $0.8=C_{2} \times 10$ <br> $C_{2}=0.08$or any alternative correctmethod | 3 | Allow follow through from part (a) <br> For the first method shown candidates should not be penalised if 16 (or volume from part a) and 10 (volume of sodium carbonate solution) are both expressed in $\mathrm{cm}^{3}$. <br> If candidate only calculates number of moles of acid the volume must be in litres to be awarded 1 mark. <br> If candidate correctly divides their number of moles of acid by 2 the mark for the mole ratio can be awarded. <br> Unit not required however if wrong unit given do not award mark for final answer. <br> Accept mol $\mathrm{l}^{-1}$ or $\mathrm{mol} / \mathrm{l}$ <br> but not $\mathrm{mol} / \mathrm{l}^{-1}$ or $\mathrm{mol}^{-1}$ or mol l <br> If concentration of incorrect chemical is calculated then $\max =1$ mark |

Page 11

| Question | Acceptable Answer | Mark | Worth $1 / 2$ | Worth 0 |
| :---: | :---: | :---: | :---: | :---: |
| Q23(c) <br> (i) <br> (ii) | colourless to orange/brown/red/yellow/any combination must be correct way round both colours required for 1 mark $16 \cdot 0 /$ $16$ | 1 or 0 <br> 1 or 0 |  | clear pink $16 \cdot 2 \mathrm{~cm}^{3}$ |
| (iii) | $\begin{align*} \text { moles of } \mathrm{Br}_{2} & =0.5 \times 0.016 \\ & =0.008 \end{align*}$ <br> moles of $\mathrm{C}_{10} \mathrm{H}_{16}=\frac{0.008}{2}=0.004 \quad 1 / 2$ <br> concentration of $\mathrm{C}_{10} \mathrm{H}_{16}=\frac{0.004}{0.02} \quad 1 / 2$ $=0.2 \quad 1 / 2$ <br> Correct answer but no working $=2$ marks <br> Or 0.2025 (if 16.2 used) $=0 \cdot 20 / 0-203$ if rounded <br> Allow follow through for incorrect answer above. $\begin{aligned} \frac{20 \times c_{1}}{1} & =\frac{16 \times 0.5}{2} \\ 40 \times c_{1} & =8 \\ c_{1} & =0.2 \end{aligned}$ <br> 1 mark <br> 1 mark <br> ( $-1 / 2$ if incorrect ratio is used) | 2 | $-1 / 2$ per arithmetic mistake <br> $-1 / 2$ for using $\mathrm{cm}^{3}$ and not litres if first method is used |  |

