EMISTR 2. Exam Practice

These sheets belong to

KHS Nov 2015 N5 - Book 2

Imtroduction

This is the second of two booklets I've written to help teach the calculations for National 5 Chemistry as taught in Scotland. The first booklet described the methods for these calculations and gave a few 'Self-Check' problems.

This 2nd booklet will be questions extracted from previous exam papers (N5, Standard Grade & Intermediate 2) to show the questions in context.

CfE (new courses) calculations are now marked in a different way with extra emphasis placed on the "Concept" (correct formula chosen and values inserted). Only if the Concept is correct will marks be awarded for correct Arithmetic.

Though full marks may be awarded for correct answer (with no working shown) on assumption that pupil must have used correct concepts, it would be better to show working in order to avoid getting zero marks.

Units are important (%, g, moles, mol l^{-1}) but to avoid drastic penalisation **most** (but not all) questions will include the required units in question. Therefore you do not always need to give the units but you will be penalised if you give wrong units.

1. Formula Mass

Formulae given in the Data Booklet

- 2. Percentage Composition % by mass = $\frac{m}{GFM} \times 100$
- 3. Molar Mass (gfm)
- 4. Molar Calculations

 $n = \frac{m}{GFM}$

- 5. Using Balanced Equations
- 6. Concentration of Solutions

n = CV

7. Titrations

$$\frac{C_1 V_1}{n_1} = \frac{C_2 V_2}{n_2}$$

KHS Nov 2015 page 2 N5 - Book 2

(a) Calculate the percentage of nitrogen in urea. Show your working clearly.

3

- Ores are naturally occurring compounds from which metals can be extracted. Q2
 - (b) Iron can be extracted from its ore haematite, Fe_2O_3 , in a blast furnace. Calculate the percentage by mass of iron in haematite.

3

- Show your working clearly.
- Q^3 Metals can be extracted from their ores by different methods.
 - (a) Place the following methods in the correct space in the table. You may wish to use the data booklet to help you.

reacting with carbon electrolysis

heat alone

Metal	Method
mercury	
iron	
magnesium	

1

- (b) Mercury can be extracted from the ore cinnabar, **HgS**.
 - (i) Calculate the percentage by mass of mercury in cinnabar.

2

Q4 Potassium hydroxide reacts with sulphuric acid to form potassium sulphate, which can be used as a fertiliser.

$$H_2SO_4(aq) \longrightarrow K_2SO_4(aq)$$

$$K_2SO_4(aq)$$

$$H_2O(\ell)$$

(a) Balance the above equation.

1

(b) Name the type of chemical reaction taking place.

1

(c) Calculate the percentage, by mass, of potassium in potassium sulphate, K_2SO_4 .

Show your working clearly.

 Q^5 Read the passage below and answer the questions that follow.

Potassium - The Super Element

Potassium is an essential element for almost all living things. The human body requires a regular intake of potassium because humans have no mechanism for storing it. Foods rich in potassium include raisins and almonds. Raisins contain 0.86 g of potassium in every 100 g.

Naturally occurring salts of potassium such as saltpetre (potassium nitrate) and potash (potassium carbonate) have been known for centuries. Potassium salts are used as fertilisers.

Potassium was first isolated by Humphry Davy in 1807. Davy observed that when potassium was added to water it formed globules which skimmed about on the surface, burning with a coloured flame and forming an alkaline solution.

- (a) State why the human body requires a regular intake of potassium.
- (b) Calculate the number of moles of potassium in 100 g of raisins.2Show your working clearly.
- Q6 Dishwasher tablets contain many different types of chemicals.

(a) A dishwasher tablet was found to contain $1.57 \,\mathrm{g}$ of the bleaching agent, sodium percarbonate.

How many moles are there in 1.57g of sodium percarbonate? (Formula mass of sodium percarbonate = 157.)

Q7 Rhubarb contains oxalic acid, $C_2H_2O_4$.

(c) A strip of rhubarb was found to contain $1.8 \,\mathrm{g}$ of oxalic acid.

How many moles of oxalic acid, C₂H₂O₄, are contained in 1·8 g.

(Formula mass of oxalic acid = 90)

1

Q8 The concentration of chloride ions in water affects the ability of some plants to grow.

A student investigated the concentration of chloride ions in the water at various points along the river Tay.

The concentration of chloride ions in water can be determined by reacting the chloride ions with silver ions.

$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$$

A $20\,\text{cm}^3$ water sample gave a precipitate of silver chloride with a mass of $1.435\,\text{g}$.

(a) Calculate the number of moles of silver chloride, AgCl, present in this sample.

Show your working clearly.

(b) Using your answer to part (a), calculate the concentration, in mol l⁻¹, of chloride ions in this sample.

Show your working clearly.

 Q^9 A student was asked to carry out an experiment to determine the concentration of a copper(II) sulfate solution.

Part of the work card used is shown.

Determination of the Concentration of Copper(II) Sulfate Solution

- 1. Weigh an empty crucible
- 2. Add 100 cm³ copper(II) sulfate solution
- 3. Evaporate the solution to dryness
- 4. Weigh the crucible containing dry copper(II) sulfate
- (a) Suggest how the student could have evaporated the solution to dryness.
- (b) The student found that the 100 cm³ solution contained 3·19 g of copper(II) sulfate, CuSO₄.

Calculate the concentration of the solution in mol l⁻¹.

Show your working clearly.

- Q10 Vinegar is an aqueous solution of ethanoic acid.
 - (a) A vinegar contains 6 g of ethanoic acid, CH₃COOH, in 100 cm³ of solution.

Calculate the concentration in mol l⁻¹ of this solution?

1

2

2

2

Q11 Rust, iron(III) oxide, that forms on cars can be treated using rust remover which contains phosphoric acid.

When painted on, rust remover changes iron(III) oxide into iron(III) phosphate.

$$Fe_2O_3 + 2H_3PO_4 \longrightarrow 2FePO_4 + 3H_2O$$

- (a) The rust remover contains 250 cm³ of 2 mol l⁻¹ phosphoric acid.
 - (i) Calculate the number of moles of phosphoric acid in the rust remover.
 - (ii) Using your answer in part (i), calculate the mass of iron(III) oxide that will be removed by 250 cm³ of 2 mol l⁻¹ phosphoric acid.
- Q12 (b) Another experiment involved determining the concentration of sodium carbonate solution by titration.

1

1

The results showed that $20\,\mathrm{cm}^3$ of sulphuric acid was required to neutralise the sodium carbonate solution.

- (i) Calculate the number of moles of sulphuric acid in this volume.
- (ii) One mole of sulphuric acid reacts with one mole of sodium carbonate.

Using your answer from part (b)(i), calculate the concentration, in mol/l, of the sodium carbonate solution.

013	(b)	Nonane	hurns	to	produce	carbon	dioxide	and	water
QIJ	(v)	Nonane	Dullis	w	produce	Carbon	dioxide	anu	water.

$$C_9H_{20} + 14O_2 \rightarrow 9CO_2 + 10H_2O$$

Calculate the mass, in grams, of carbon dioxide produced when 32 g of nonane is burned.

3

3

2

1

2

Show your working clearly.

- Q14 A student investigated the reaction of carbonates with dilute hydrochloric acid.
 - (b) In another reaction 1g of calcium carbonate reacted with excess dilute hydrochloric acid.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(\ell)$$

- (i) Calculate the mass, in grams, of carbon dioxide produced.
- Q15 Nitrogen trifluoride, NF₃, is used in the manufacture of plasma screens.
 - (c) The equation for the formation of nitrogen trifluoride, NF_3 , is:

$$N_2 + 3F_2 \longrightarrow 2NF_3$$

Calculate the mass of nitrogen trifluoride produced from 7 g of nitrogen.

Show your working clearly.

Q16 Ammonium sulphate is a commonly used fertiliser. It can be produced by the reaction between ammonium carbonate and calcium sulphate.

$$(NH_4)_2CO_3(aq) + CaSO_4(aq) \longrightarrow (NH_4)_2SO_4(aq) + CaCO_3(s)$$

- (a) Name this type of chemical reaction.
- (b) What mass of ammonium carbonate, $(NH_4)_2CO_3$, would be needed to make $13.2 \,\mathrm{kg}$ of ammonium sulphate, $(NH_4)_2SO_4$?
- Q17 Ammonia is a compound of nitrogen and hydrogen.
 - (c) Ammonia, a weak base, can be used to make the fertiliser ammonium phosphate.

$$3NH_3 + H_3PO_4 \longrightarrow (NH_4)_3PO_4$$

(ii) Calculate the mass of ammonium phosphate that would be produced from 510 g of ammonia.

- Q18 Fats and oils are examples of esters. The structure of the fat glyceryl tristearate is shown below.
 - (c) The equation below shows the breakdown of glyceryl tristearate to form glycerol and stearic acid.

$$C_{57}H_{110}O_6$$
 + $3H_2O$ \longrightarrow $C_3H_8O_3$ + $3C_{18}H_{36}O_2$ glyceryl tristearate water glycerol stearic acid

$$GFM = 890 g$$

Calculate the mass of stearic acid produced from 8.9g of glyceryl tristearate.

2

2

Q19 (b) Silver tarnishes in air forming black silver sulphide, Ag_2S .

The equation for the reaction is:

$$4Ag + 2H_2S + O_2 \longrightarrow 2Ag_2S + 2H_2O$$

What mass of silver sulphide would be formed from 1.08g of silver?

Q20 (b) The equation for the reaction is:

$$H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O$$

In the experiment $50 \, \text{cm}^3$ of sodium hydroxide solution reacted with $20 \, \text{cm}^3 \, 0.1 \, \text{mol} \, l^{-1}$ dilute sulphuric acid.

Calculate the concentration of the sodium hydroxide solution.

Q21 Vitamin C is found in fruits and vegetables.

Using iodine solution, a student carried out titrations to determine the concentration of vitamin C in orange juice.

The results of the titration are given in the table.

Titration	Initial burette reading (cm³)	Final burette reading (cm³)	Titre (cm³)		
1	1.2	18.0	16.8		
2	18.0	33.9	15.9		
3	0.5	16.6	16·1		

(a) Calculate the average volume, in cm³, that should be used in calculating the concentration of vitamin C.

1

(b) The equation for the reaction is

$$C_6H_8O_6(aq) + I_2(aq) \longrightarrow C_6H_6O_6(aq) + 2HI(aq)$$

vitamin C

Calculate the concentration, in mol l⁻¹, of vitamin C in the orange juice. 3 Show your working clearly.

Q22 Sodium carbonate solution can be added to the water in swimming pools to neutralise the acidic effects of chlorine.

A student carried out a titration experiment to determine the concentration of a sodium carbonate solution.

(a) Using the results in the table, calculate the average volume, in cm³, of hydrochloric acid required to neutralise the sodium carbonate solution.

(b) The equation for the reaction is

Using your answer from part (a) calculate the concentration, in mol l^{-1} , of the sodium carbonate solution.

3

Show your working clearly.

Q23 (c) (continued)

Using bromine solution, a student carried out titrations to determine the concentration of limonene in a household cleaner.

Titration	Initial burette reading (cm ³)	Final burette reading (cm ³)	Titre (cm³)
1	0.5	17·1	16.6
2	0.2	16.3	16.1
3	0.1	16.0	15.9

(i) What colour change would be seen in the flask that indicates the end point of the titrations?

_____ to ______**1**

(ii) What average volume should be used in calculating the concentration of limonene?

 $\underline{\qquad}$ cm³ 1

(iii) The equation for the reaction between limonene and bromine solution is shown.

$$C_{10}H_{16}(aq) + 2Br_2(aq) \longrightarrow C_{10}H_{16}Br_4(aq)$$

Calculate the concentration of limonene in the household cleaner. 2

Q1	a	gfm = 60	1 mark	3	Allow follow through from
		28/60 × 100	1 mark		incorrect gfm
		Final answer 46.6%	1 mark		Do not allow 46 on its own
		46·6 / 46·7 / 47 on i	its own 3 marks		

Page 3

Que	stion	Answer		Max Mark	Additional Guidance
<i>Q</i> 2	(b)	70 with no working (3)		3	If atomic numbers are used with working shown (68.4 %) maximum 2 marks
		GFM = 160g	(1)		68·4 on its own - 0 marks
		112 / 160 x 100	(1)		Allow follow through
		= 70	(1)		If candidate correctly calculates percentage of oxygen (30%) rather than iron maximum 2 marks but working must be shown
					30% on its own zero marks
					Unit not required however if wrong unit given do not award mark for final answer.

Qu	Question		Acceptable Answers	Mark	Unacceptabl
Q3	а		Heat alone (Reacting with) carbon Electrolysis	1 or 0	
Q3	b	i	FM = 232·5 (1)	2	
			200·5/232·5 x 100 = 86·2% or 86% (1) 86·2% or 86% on its own 2 marks		
			Use of atomic numbers max 1 mark, must have working to gain the mark, 83·3%		
			Incorrect rounding (with working) –(½) Metal other than Hg max 1 mark		

Page 3

Question	Acceptable Answer	Mark	Unacceptable Answer
Q4 (a)	2KOH + H_2SO_4 \longrightarrow K_2SO_4 + $2H_2O$ Or correct multiples	1	
(b)	neutralisation	1	
(c)	FM = 174g (1 mark) 78/174 × 100 = 44.8 (1 mark) 44.8 or 45 on its own 2 marks Deduct ½ mark for arithmetic error Using atomic numbers 44% (max 1 mark) 44 must have working If use mass of one potassium max 1 mark If use S or O max 1 mark	2	44 on its own zero If use element not in potassium sulphate – zero marks

Page 4

Question	Answer		Max Mark	Additional Guidance
Q5 (a)	Potassium is an essential element or humans / human body ca store it / have no mecha for storing it	annot	1	
(b)	0.022 or 0.02 (moles) with working 0.86 / 39 = 0.022 or 0.02 (moles)	(1) (1)	2	Any incorrect answer with no working award zero marks Allow follow through if incorrect value extracted from text and correctly divided by 39. 39/0·86 = 45·34 1 mark 0·86/100 = 0·0086 1 mark 100/39 = 2·56 1 mark Any other response zero marks If incorrect unit used maximum of 1 mark awarded Accept mol(s) Do not accept ml, g
HS Nov 2015	•	page	e 13	N5 - Book

Q6	а	157	0·01 moles es on its own			1	1/2 mark – working only 1.57 157 1/2 mark – arithmetic error
Q7	(c)	1.8 90 = 0.02 or 1/50 Or 0.02 or 1/50	½ ½ on its own	1	1		only netic mistake llow through

Page 5

Q 8	a	3		1 mark	2	Allow follow through if gfm incorrect		
			1.435 / 143.5 = 0.01 mol 0.01 mol on its own	1 mark 2 marks				
Q8	b		Answer from part (a) $/ 0.02$ Correct answer 0.01 / 0.02 $= 0.5 \text{ mol l}^{-1}$ 0.5 mol l^{-1} on its own	1 mark 1 mark 1 mark 1 mark 2 marks	2	Allow follow through from answer to part (a) If correct relationship but volume not converted to litres eg 0.01/20 max 1 Mark		

Question	Acceptable Answer(s)	Max Mark	½ mark	Unacceptable
Q10 a	gfm = 60g $\frac{1}{2}$ Moles = 6/60 = 0·1 (moles) $\frac{1}{2}$ C = 0·1/0·1 = 1 (moll ⁻¹) 1 Accept follow through Minus $\frac{1}{2}$ mark arithmetic error correct working but incorrect answer	2		0.1 x1000 100 Does not get 2 nd mark

Page 5

Question	Answer	Max Mark	Additional Guidance
Q9 (a)	Boil it or boil off the water or heat it or leave it for some time/overnight/next lesson or leave it on the window ledge or use Bunsen (burner) or appropriate diagram	1	Any mention of filtering negates the correct answer. Refer to General Marking Principle (g) for guidance. Award zero marks for leave it with no indication of appropriate time or do nothing. Award zero marks awarded for mention of burn or burning. This negates the correct answer.
Q9 (b)	0.2 with no working (2) Partial marking $3.19/159.5 = 0.02$ (1) $0.02/0.1 = 0.2$ (1) (this step on its own 2 marks) or $(3.19 \text{ in } 100 \text{ cm}^3)$ $31.9 \text{ in } 1000 \text{ cm}^3 \text{ or } 1 \text{ litre}$ (1) $31.9/159.5 = 0.2$ (1) (this step on its own 2 marks)	2	Allow follow through from step 1 Award 1 mark for 0·1> 3·19 1> 31·9 Zero marks are awarded for only showing c=n/v where the answer is not 0·2 Unit is not required however if the wrong unit is given a maximum of 1 mark out of 2 can be awarded. Accept mol l ⁻¹ or mol/l ('L' in place of 'l') Do not accept mol/l ⁻¹ or mol l

Question	Acceptable Ansv	ver	Mark	Worth 1/2	Worth 0
Q11 _{(a) (i)}	2 x 0.25 ½ = 0.5 ½ 0.5 no working 1		1	2 x 0.25 only/ Arithmetic mistake	2 x 250 = 500 2/250 = 0.008 (will give 0.64 as follow through) n=cv no working
(ii)	GFM Fe ₂ O ₃ = 160	1/2			
	Moles of Fe ₂ O ₃ = $\frac{0.5}{2}$ = 0.25 or mole ratio stated Fe ₂ O ₃ : H ₃ PO ₄ 1 : 2	1/2			
	Mass of Fe ₂ O ₃ = 0.25 X 160 = 40	½ ½			
	Or 40 on its own (2)				
	Allow follow through using number part (i) if show working If atomic number is used instead of mark				
	If use ratio 1:1 80g 1 ½ if show we	orking			

Question	Acceptable Answers	Mark	Unacceptable Answers
<i>Q12</i> b i	(n = c x V)	1	n = c x V on its own
	$n = 0.05 \times 0.02 (\frac{1}{2})$		1 on its own zero marks 0·01 on its own zero marks
	n = 0.001 (%)		25 cm ³ used as volume zero
	If 20 cm ³ used in place of 0.02 (-½) Using wrong substance i.e. 0.025 (-½)		marks
<i>Q12</i> b ii	Apply mole ratio 1:1	1	
	0.001 → 0.001 (½)		
	0·001 = c x 0·025		
	$c = \underline{0.04} \tag{1/2}$		
	allow for follow through from (b) (i)		
	Don't penalise for non-conversion to litres here if already penalised in (b) (i) PVC method can give an answer for b (ii) even if b (i) is wrong or blank if correct 1 mark for b (ii)		20 cm³ used as volume zero marks
	If 25 cm ³ used in place of 0.025 (-½) mark Using wrong substance i.e. 0.020 (-½) mark		

Page 7

Question	Answer	Max Mark	Additional Guidance
Q13 (b)	99 with no working (3) 32/128 = 0.25 (1) 0.25 gives 2.25 (9 x 0.25) (1) (this step on its own 2 marks)	3	32/96 (mass of nonane incorrect) = 0.33 zero marks 0.33 x 9 = 2.97 1 mark correct
	2·25 x 44 = 99 (1) (this step on its own 3 marks)		follow through 2.97 x 44 = 130.68 1 mark correct follow This would be awarded 2 out of 3 marks
	128 g and 44 g both shown (1) 128 g gives 396 g (9 x 44) (1) (this step on its own 2 marks)		- Any other answer without working = zero marks
	32 g gives 99 g [(396/128) x 32] (1) (this step on its own 3 marks)		Unit not required however if wrong unit given do not award mark for final answer.
	128 g and 44 g both shown (1) 128 g gives 396 g (9 x 44) (1) (this step on its own 2 marks)		If candidate uses incorrect mas for 9 moles CO ₂ and has clearly shown working for this step maximum 2 marks can be awarded.
	128/32 = 4 396/4 = 99 (1) (this step on its own 3 marks) Any other valid method		If candidate uses incorrect mas for 9 moles of CO ₂ and has shown no working for this step maximum of 1 mark can be awarded.
	accepted.		This also applies to GFM of nonane.

Q14	a	ii	Li Cl formula/words/circle /highlighted in equation 1:1 ratio	ed 1 marк	1			
			0.01 × 44 = 0.44	1 mark				
			Units not required					
			1 mole gives 1 mole	1 mark				
			100 g gives 44 g	1 mark				
			1 g gives 44/100 = 0·44	1 mark				
			0-44 on its own	3 marks				

Page 7

Question	Acceptable Answers	Mark	Unacceptable Answers
Q15 c	1 mole N ₂ = 28 g 7/28 = 0.25 moles (½) 0.25 to 0.5 (1 mole to 2 moles) (½) 1 mole NF ₃ = 71 g (½ for both formula masses) $71 \times 0.5 = 35.5$ (½) 35.5 on its own 2 marks 1 : 2 (½) 28 : 142 (½) 1 \longrightarrow 142/28 (½) $7 \longrightarrow$ 142 × 7/28 = 35.5 (½)	2	Use of any atomic number maximum 1 mark if working is shown. If no working is shown then zero marks. (Possible answers using atomic numbers in one or both formula masses: 34 g, 71 g, 17 g.) Using 2NF₃ as 2N and 3F to calculate FM (85) max 1 mark 28 → 85 7 → 21⋅25
	or any other acceptable method		

Q	uestion	Acc	eptable Answer		Mark	Worth ½
Q16	(a)	Precipitation (ignore	spelling)		1 or 0	
	(b)	1 mole (NH ₄) ₂ SO ₄ Moles of (NH ₄) ₂ SO ₄ Moles of (NH ₄) ₂ CO ₃ Moles of (NH ₄) ₂ CO ₃ OR (NH ₄) ₂ CO ₃ 1 mole 96 g 13200 132 × 96 = 9600 g/9·6 kg -½ for 9600 kg 9600 g or 9.6 kg on it accept working in grat 13·2/132 = 0·1 0·1 × 96 = 9·6 kg no ½ mark for GFM (=\frac{13200}{132} = 100 m = 100 = 100 × 96 = 9600 g/9·6 kg (NH ₄) ₂ SO ₄ 1 mole 132 g 13200 g	1/2 1/2 1/2 1/2 1	2	-½ per arithmetic mistake -½ for incorrect conversion to kg penalise once only -1 if used atomic numbers -1 if incorrect chemical or formula is used in calculation

Page 7

Qı	uesti	on	Acceptable Answer(s)		Max Mark	½ mark	Unacceptable
Q17	С	ii	gfm NH ₃ =17g	1/2	2		
			moles of NH ₃ =510/17=30 moles	1/2			
			moles of $(NH_4)_3PO_4$ =30/3=10 moles	1/2			
			Mass of (NH ₄) ₃ PO ₄ =10x149=1490 grams	1/2			
			OR				
			$3NH_3 \longrightarrow (NH_4)_3PO_4$ $3 \text{ mole} \qquad 1 \text{mole} \qquad \frac{1}{2}$ $3 \times \frac{17}{51} \longrightarrow 149 \qquad \frac{1}{2}$ $510 \longrightarrow 1490 \qquad \frac{1}{2}$	2			
			Accept follow through Correct answer but no working If use wrong formula or wrong substance then -1 mark so max is mark NH ₃ to H ₃ PO ₄ = 980 H ₃ PO ₄ to (NH ₄) ₃ PO ₄ = 775.4	2 5 1			

Page 8

Q18 c	8·9 890 0·01 mole	2	Allow follow through if made a
	$0.01 \times 3 = 0.03 \text{ moles}$		mistake in calculation/ arithmetic error
	GFM stearic acid = 284		anumenc enoi
	Mass of stearic acid = $0.03 \times 284 = 8.52$		
	1mole \rightarrow 3 moles $\frac{1}{2}$ 890g \rightarrow 3 × 284g ($\frac{1}{2}$ for GFM for stearic acid 8.9 \rightarrow 8.9 ($\frac{1}{2}$) × 852g (3 × 284)		
	$\frac{0.9}{890}$ Mass of stearic acid = 8.52g 1/2		
VUC Nov. 20)/5 page 10		N5 Pools 2

Question	Acceptable Answer	Mark	Worth ½	Worth 0
Q19 (b)	4 moles to 2 moles	1/2	-½ mark per arithmetic mistake,	If they only have calculated
217 (0)	$4 \times 108g = 2 \times 248$	/2	even if correct final answer is given	the GFM for Ag ₂ S (as 248)
	432 = 496	1/2	great is great	ane 3111116111g ₂ 8 (as 210)
	$1.08 = 1.08 \times 496/432$	-	-1 mark if atomic numbers are used	
	= 1.24	1		
			-1 mark if incorrect chemical used in	
	OR		calculation	
	no of moles of Ag = $1.08/108$			
	= 0.01 moles	1/2		
	no of moles of $Ag_2S = 0.01/2$			
	= 0.005	1/2		
	$GFM Ag_2S = 248$			
	Mass of Ag ₂ S = 0.005×248			
	= 1.24	1		
	Ignore units/absence of units/ incorrect units given			
	Check paper for indication of final answer.			
	check paper for indication of final answer.			

Question	Acceptable Answer	Mark	Worth 1/2
Q20 (b)	Moles of acid = $C \times V$		-½ per arithmetic error
	$= 0.1 \times 0.02$		
	= 0.002 1 mole to 2 moles	1/ ₂ 1/ ₂	-½ if cm³ used instead of litres only in method 1
	moles of NaOH = $0.002 \times 2 = 0.004$	72	III IIIctilod 1
	c = n/v		
	= 0.004/0.05		
	= 0.08	1	
	OR		
	$H \times C \times V = OH \times C \times V$		
	$2 \times 0.1 \times 20 = 1 \times C \times 50$	1/2	-½ if cm ³ and litres mixed i
	4 = 50C	1/2	method 2/3
	C = 4/50	1/2	
	= 0.08	1/2	
	OR	/2	
	C. V.		
	$\frac{C_{\underline{A}} V_{\underline{A}}}{C_{\underline{B}} V_{\underline{B}}} = \frac{\underline{b}}{\underline{a}}$		
	CBVB a		
	$0.1 \times 20 = 1$		
	C _B x 50 2	1/2	
	$C_B = 0.1 \times 20 \times 2$		
	50	1/2	
	$=\frac{4}{50}$	1/	
	30	1/2	
	= 0.08	1/2	

Page 9

Question		Answer	Max Mark	Additional Guidance	
Q21	(a)	16	1	Unit is not required however if the wrong unit is given do not award mark.	
	(b)	0.0032/3.2 x 10 ⁻³ with no working or correctly rounded answer (3)	3	Allow follow through from part 15(a). Refer to General Marking	
		Partial marking		Principle (k) for guidance.	
		0.0050 x 0.016 = 0.00008 mol I ₂ (1) 0.00008 mol of Vit C (1) (this step on its own gets 2 marks)		Candidates should not be penalised if 16 (or volume from part a) and 25 (volume of vitamin C solution) are both expressed in cm ³ .	
		$0.00008/0.025 = 0.0032/3.2 \times 10^{-3}$ (1)		If candidate expresses one volume in cm ³ and the other in litres then a maximum of	
		(this step on its own gets 3 marks)		two marks can be awarded.	
		or $0.0050 \times 16 = 0.08 \text{ mol } I_2$ (1)		If candidate only calculates number of moles of iodine the volume must be in litres	
		0.08 mol of Vit C (1) (this step on its own gets 2 marks)		to be awarded 1 mark i.e. $0.0050 \times 16 = 0.08 \text{ mol } I_2 \text{ on}$ its own with no further working is awarded zero marks.	
		$0.08/25 = 0.0032/3.2 \times 10^{-3}$ (1) (this step on its own gets 3 marks)		Zero marks are awarded if values for C, V and n are given but not used in an	
		$\frac{C_1 \times 25}{1} = \frac{0.0050 \times 16}{1} \tag{1}$		appropriate method. For method using relationsh shown in the data book 1 mark is awarded for the correct pairings of volume (the same unit) and concentration.	
		$C_1 \times 25 = 0.08$ (this step on its own gets 2 marks)			
		$C_1 = 0.0032/3.2 \times 10^{-3}$ (1) (this step on its own gets 3 marks) or		1 mark is awarded for the correct mole ratio being applied.	
		$\frac{C_1 \times 0.025}{1} = \frac{0.0050 \times 0.016}{1} (1)$		1 mark is awarded for the correct arithmetic. This ma can only be awarded if an	
		$C_1 \times 0.025 = 0.00008$ (this step on its own gets 2 marks)		appropriate method has been used.	
		$C_1 = 0.0032/3.2 \times 10^{-3}$ (1) (this step on its own gets 3 marks)		Unit is not required however if the wrong unit is given then the final mark cannot be awarded.	
		OR ANY OTHER ACCEPTABLE METHOD		Accept mol l ⁻¹ or mol/l but not mol/l ⁻¹ or mol ⁻¹ or mol l	

Page 10

Question	Answer	Max Mark	Additional Guidance
<i>Q22</i> (a)	16	1	Unit not required however if wrong unit given do not award mark for final answer.
(b)	0.08 with no working marks 0.1 x 0.016 = 0.0016 (1) 0.0016/2 = 0.0008 (1) 0.0008/0.01 = 0.08 (1) 0.08 on its own 3 marks or $\frac{0.1 \times 16}{2} = \frac{C_2 \times 10}{1}$ (1) 0.8 = $C_2 \times 10$ (1) $C_2 = 0.08$ (1) or any alternative correct method		Allow follow through from part (a) For the first method shown candidates should not be penalised if 16 (or volume from part a) and 10 (volume of sodium carbonate solution) are both expressed in cm³. If candidate only calculates number of moles of acid the volume must be in litres to be awarded 1 mark. If candidate correctly divides their number of moles of acid by 2 the mark for the mole ratican be awarded. Unit not required however if wrong unit given do not award mark for final answer. Accept mol l¹¹ or mol ll but not mol /l²¹ or mol lout not mol /l² or mol lout not mol /l

Question	Acceptable Answer	Mark	Worth 1/2	Worth 0 clear pink
Q23 (c) (i)	colourless to orange/brown/red/yellow/any combination must be correct way round both colours required for 1 mark	1 or 0		
(ii)	16·0/ 16	1 or 0		16-2 cm ³
(iii)	moles of $\text{Br}_2 = 0.5 \times 0.016$ $= 0.008 \qquad \qquad 1/2$ $\text{moles of } C_{10} H_{16} = \frac{0.008}{2} = 0.004 \qquad 1/2$ $\text{concentration of } C_{10} H_{16} = \frac{0.004}{0.02} \qquad 1/2$ $= 0.2 \qquad 1/2$ $\text{Correct answer but no working} = 2 \text{ marks}$ $\text{Or } 0.2025 \text{ (if } 16.2 \text{ used)}$ $= 0.20/0.203 \text{ if rounded}$ Allow follow through for incorrect answer above. $\frac{20 \times c_1}{1} = \frac{16 \times 0.5}{2} \qquad 1 \text{ mark}$ $\frac{40 \times c_1 = 8}{c_1 = 0.2} \qquad 1 \text{ mark}$ $(-1/2 \text{ if incorrect ratio is used)}$	2	-½ per arithmetic mistake -½ for using cm³ and not litres if first method is used	