# $+\div 1-\equiv \mathbb{N}$ <br> <br> Airdrie Academy 

 <br> <br> Airdrie Academy}

Numeracy is developed in Maths but is reinforced in departments across the school.

## Introduction

This is the 1st edition of the Airdrie Academy Numeracy booklet.
This booklet is designed to be a guide for pupils, parents and teachers of all subject areas to show how Numeracy is approached in Airdrie Academy.

Aim
The main aim of this booklet is to show pupils, parents and teachers the key strategies the Maths department use to teach each of the topics.

It is hoped that with a consistent approach across the whole school and at home, pupils will be able to enjoy and progress in numeracy, thus improving their attainment.

Thanks
A huge thank you to everyone who helped produce this booklet. It could not have happened without your help. Thanks!

Contents

| Page 1 | Addition | MUN 3-03a |
| :---: | :---: | :---: |
| Page 2 | Subtraction | MNU 3-03a |
| Page 3 | Multiplication | MNU 3-03a |
| Page 4 | Division <br> Factors and Multiples | MNU 3-03a MTH 3-05a |
| Page 5 | Order of Calculation | MNU 3-03b |
| Page 6 | Rounding (including Significant Figure) | MNU 3-01a |
| Page 7 | Estimating <br> Place Value | MNU 3-03a <br> MNU 3-03b |
| Page 8 | Integers | MNU 3-04a |
| Page 9 | Numeracy Conversations | MNU 3-11a |
| Page 10 | Perimeter, Area and Volume | MNU 3-11a |
| Page 11 | Time | MNU 3-10a |
| Page 12 | Speed, Distance and Time | MNU 3-10a |
| Page 13 | Coordinates | MTH 3-18a |
| Page 14 | Bar Graphs | MTH 3-21a |
| Page 15 | Line Graphs | MTH 3-21a |
| Page 16 | Connecting Fractions, Decimals and Percentages | MNU 3-07a |
| Page 17 | Percentages | MNU 3-07a |
| Page 18 | Decimals | MNU 3-07a |
| Page 19 | Fractions | MTH 3-07c |
| Page 20 | Adding and Subtracting Fractions | MTH 3-07b |
| Page 21 | Scientific Notation | MTH 3-06a |
| Page 22 | Proportion | MNU 3-08a |
| Page 23 | Ratio <br> Probability | MNU 3-08a MNU 3-22a |
| Page 24 | Multiplication Grid | MNU 3-03b |

## Addition

MNU 3-03a I can use a variety of methods to solve number problems in familiar contexts, clearly communicating my process and solutions.

Pupils are taught to understand addition as combining two sets and counting on.

| Adding up in Chunks <br> / Counting on | Place Value- <br> Partitioning | Compensation <br> $37+48$ <br> $=85$ |
| :---: | :---: | :---: |

## Subtraction

MNU 3－03a I can use a variety of methods to solve number problems in familiar contexts， clearly communicating my process and solutions．

Pupils are taught to understand subtraction as taking away（counting back）and finding the difference（counting on）．

| Removal or Counting Back $\begin{aligned} & 123-69 \\ & 123-(20+40+3+6) \\ & 123-20=103 \\ & 103-40=63 \\ & 63-3=60 \\ & 60-6=54 \end{aligned}$ | Place Value－ Partitioning $\begin{gathered} 367-154 \\ 367-100=267 \\ 267-50=217 \\ 217-4=213 \end{gathered}$ | Keep a constant difference $\begin{gathered} 151-98 \\ +2+2 \\ 153-100 \\ =53 \end{gathered}$ |
| :---: | :---: | :---: |
| Reordering | Adjusting for Easier numbers $\begin{gathered} 123-59 \\ +1 \\ 123-60 \\ =63+1 \\ =64 \end{gathered}$ | Adding up／ Bridging through 10 $\begin{aligned} & 23-16 \\ & 16+4+3=23 \end{aligned}$ $4+3=7$ |
| Place Value and Negative numbers $\begin{gathered} 399-254 \\ (300+90+9)-(200+50+4) \\ 300+90+9 \\ -200-50-4 \\ \\ 100+40+5 \\ =145 \end{gathered}$ | $\begin{array}{r} 897 \\ -\quad 674 \\ \hline 223 \\ \hline \end{array}$ | $\begin{aligned} & \text { nen / } \\ & \text { ney } \\ & 450^{9} 10 \\ & -268 \\ & \hline 232 \end{aligned}$ |

## Multiplication

MNU 3-03a I can use a variety of methods to solve number problems in familiar contexts, clearly communicating my process and solutions.

Pupils are taught to understand multiplication as repeated addition and scaling. It can also describe an array, for example the grid method.

| Friendly Numbers $\begin{gathered} 9 \times 15 \\ 10 \times 15=150 \\ 150-15=135 \end{gathered}$ | Partial Products $\begin{gathered} 6 \times 125 \\ 6 \times(100+20+5) \\ \\ (6 \times 100)+(6 \times 20)+(6 \times 5) \\ 600+120+30 \\ =750 \end{gathered}$ | Breaking into factors $12 \times 25$ $\begin{gathered} 2 \times 6 \times 25 \\ 2 \times 25=50 \\ 50 \times 6=300 \end{gathered}$ |
| :---: | :---: | :---: |
| Repeated Addition $\begin{gathered} 6 \times 15 \\ 15+15+15+15+15+15 \\ 15+15=30 \\ 30+15=45 \\ 45+15=60 \\ 60+15=75 \\ 75+15=90 \end{gathered}$ | Doubling and Halving $24 \times 8$ $x 2 \div 2$ $48 \times 4$ $\times 2 \div 2$ $96 \times 2$ $=192$ | Written Sum $\begin{gathered} 137 \times 4 \\ 137 \\ \times 4 \\ \hline \frac{548}{12} \end{gathered}$ |
| Grid Method$35 \times 7$$X$ 30 5 <br> 7 210 35$210+35=245$ |  |  |

## Division

MNU 3－03a I can use a variety of methods to solve number problems in familiar contexts， clearly communicating my process and solutions．

Pupils are taught to understand division as sharing and grouping．

| Partial Quotients | Multiplying Up | Repeated subtraction |
| :---: | :---: | :---: |
| $550 \div 15$ | $72 \div 8$ |  |
|  |  | $24 \div 6$ |
| 36 r 10 | $8 \times 5=40$ |  |
| $1 5 \longdiv { 5 5 0 }$ | $8 \times 4=32$ | $24-6=18$（1） |
| $\frac{-150}{400}(10 \times 15)$ | ＋ | 18－6＝12（2） |
| －300（ $20 \times 15$ ） | 72 | $12-6=6$（3） |
| 100 -90 | $5+4=9$ | $6-6=0$（4） |
| 10 | $72 \div 8=9$ | $24 \div 6=4$ |
| $10+20+6=36$ |  |  |

## Factors and Multiples

MTH 3－05a I have investigated strategies for identifying common multiples and common factors，explaining my ideas to others and can apply my understanding to solve related problems．

Correct language is very important for use in algebraic work from level 2 onwards

3 is a factor of 12

4 is a common factor of 20 and 24

4 is the highest common factor of 12 and 16

12 is a multiple of 3
24 is a common multiple of 3 and 4

12 is the lowest common multiple of 3 and 4

Finding factors of a number in an organised fashion is essential for algebraic fluency List the factors of 48 －list as ordered pairs so that none are missed

$$
1 \times 48, \quad 2 \times 24, \quad 3 \times 16, \quad 4 \times 12, \quad 6 \times 8
$$

## Order of Calculations

MNU 3-03b I can continue to recall number facts quickly and use them accurately when making calculations.

The rule BODMAS (or BIDMAS) tells us what operations should be done first.
B Brackets
B Brackets
O Of
I Indices
D Division
D Division
M Multiplication
M Multiplication
A Addition
A Addition
$S$ Subtraction
S Subtraction

For example:
$26-2 \times 12$
$=26-24$ BODMAS tells us to multiply before we subtract
$=2$
$(10+5) \times 8$
$=15 \times 8$ BODMAS tells us to do the brackets first then multiply
$=120$
$4^{2}+8 \times 3$
$=16+24$ BODMAS tells us to do the power and multiply
$=40$ before we add

## Rounding

MNU 3-01a I can round a number using an appropriate degree of accuracy, having taken into account the context of the problem.

Numbers can be rounded to give an approximate answer. For example numbers are rounded when a general picture is required not the actual number.

For example - We do not need to know that there were 220,753 spectators in one day at the London Olympics. We would round it accordingly to 221,000

## Rules of rounding

## If the next number is a 4 or below we round down If the next number is a 5 or above we round up

## Examples

Round 77 to the nearest 10 Answer $=80$
Because 77 is closer to 80


6713 to the nearest 100 is 6700
6713 to the nearest 1000 is 7000

## Rounding to Decimal places

Pupils will be asked to round to a set number of decimal places. The number of digits to be left after the decimal point. The above rules still apply just to the next number.
For example
25.8437 rounded to 3 decimal places is 25.844
25.8437 rounded to 1 decimal place is 25.8

## Rounding to Significant Figures

Pupils will be asked to round to a set number of significant figures. Significant figures start from the first digit of the number. Again the above rules still apply.
For example
46843 rounded to 4 significant figures is 46840
46843 rounded to 3 significant figures is 46800
46843 rounded to 2 significant figures is 47000
46843 rounded to 1 significant figure is 50000

Notice with significant figures we still require to keep the zeros as place holders

## Estimating

MNU 3-03a I can use a variety of methods to solve number problems in familiar contexts, clearly communicating my process and solutions.

Estimating is used to give an approximate answer so we can check our calculations.
For example - The numbers of ice creams sold were:

| Monday | Tuesday | Wednesday | Thursday | Friday |
| :---: | :---: | :---: | :---: | :---: |
| 96 | 76 | 102 | 52 | 113 |

We could round the numbers so we can estimate where the answer should be.

Instead of
We add
$96+76+102+52+113$
$100+80+100+50+110=440$

Pupils should be encouraged to estimate their answers before they perform the calculations.

## Place Value

MNU 3-03b I can continue to recall number facts quickly and use them accurately when making calculations.

| mullons |  | Thousans | Thousands | Hundeds | Tens | Unts | - e 场 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 5 | 1 | 4 | 8 | 9 | - 3 |

## Adding and Subtracting Integers

MNU 3-04a I can use my understanding of numbers less than zero to solve simple problems in context.

Integers are numbers that are not fractions and can be positive, negative and zero. We put brackets around the negative numbers to highlight that they are negative.

1) $8-12=-4$
2) $(-5)-6$
$=-11$
3) $(-4)+(-9)$
$=-4-9=-13$
4) $8+(-14)$
$=8-14=-6$
5) $(-3)-(-10)$
$=-3+10=7$
6) $(-7)-(-5)$
$=-7+5=-2$

## Multiplying and Dividing Integers

1) $(-5) \times 8$
$=-40$
2) $6 \times(-7)$
$=-42$
3) $(-2) \times(-9)$
$=18$
4) $(-12) \div 3$
$=-4$
5) $20 \div(-10)$
$=-2$
6) $(-45) \div(-5)=9$

$$
\begin{array}{ll}
+x+=+ & +\div+=+ \\
+\times-=- & +\div-=- \\
-\times+=- & -\div+=- \\
-\times-=+ & -\div-=+
\end{array}
$$

## Numeracy Conversions

MNU 3-11a I can solve practical problems by applying my knowledge of measure, choosing the appropriate units and degree of accuracy for the task and using a formula to calculate area and volume when required.


Remember to choose the right units for the calculations!

## Perimeter, Area and Volume

MNU 3-11a I can solve practical problems by applying my knowledge of measure, choosing the appropriate units and degree of accuracy for the task and using a formula to calculate area and volume when required.

| Perimeter <br> The perimeter is defined as the length round the outside of the shape | Area <br> The area is defined as the amount of surface inside the boundary of a 2 dimensional object. | Volume <br> The volume is defined as the amount of space inside a 3 dimensional object. |
| :---: | :---: | :---: |
| Example <br> Find the perimeter of this shape. | Example <br> Find the area of this shape. | Example <br> Find the volume of this cuboid. |
| $\begin{aligned} & 7 \mathrm{~cm} \\ & 10 \mathrm{~cm} \end{aligned}$ | $10 \mathrm{~cm}$ | $7 \mathrm{~cm}$ <br> 5 cm |
| $\begin{aligned} \text { Perimeter } & =10+7+10+7 \\ & =34 \mathrm{~cm} \end{aligned}$ | $\begin{aligned} \text { Area } & =\text { length } \times \text { breadth } \\ & =10 \times 7 \\ & =70 \mathrm{~cm}^{2} \end{aligned}$ | $\begin{aligned} \text { Volume } & =\text { length } \times \text { breadth } \times \text { height } \\ & =1 \times b \times h \\ & =10 \times 5 \times 7 \\ & =350 \mathrm{~cm}^{3} \end{aligned}$ |

## Time

MNU 3 -10a Using simple time periods, I can work out how long a journey will take, the speed travelled at or distance covered, using my knowledge of the link between speed distance and time.

Time can be displayed on a clock face or a digital clock.


## 12 - Hour Notation

When writing time in 12 hour notation, we need to add am or pm after.

- am is used between midnight and 12 noon (Morning)
- pm is used between 12 noon and midnight (Afternoon)


## 24 - Hour Notation

In 24 hour notation the hours are written between 00 and 24 .

- Midnight is 00:00 and noon 12:00

This can be written with or without the dots.
For example bus or train timetables do not have dots.

Examples
8.50am $\rightarrow 08: 50$

03:15 $\rightarrow 3: 15 \mathrm{am}$
$3.45 \mathrm{pm} \rightarrow 15: 45$
11:20 $\rightarrow$ 11.20am
9.30pm $\rightarrow$ 21:30

22:10 $\rightarrow$ 10:10pm


## Counting Time

When calculating time we will always use the counting on method. Pupils should be able to work in am/pm and 24hour notation and answer questions appropr ately.

Find the time difference between 08:40 and 14:15



孔-X우을

## Speed，Distance and Time

MNU 3－10a Using simple time periods，I can work out how long a journey will take，the speed travelled at or distance covered，using my knowledge of the link between speed distance and time．

For any given journey the distance travelled depends on the speed and the time taken．If the speed is a constant then the following formulas apply．
Speed $=\frac{\text { Distance }}{\text { Time }}$

$$
S=\frac{D}{T}
$$

Distance $=$ Speed $x$ Time

$$
D=S \times T
$$


$T i m e=\frac{\text { Distance }}{\text { Speed }} \quad T=\frac{D}{S}$

In Physics the speed is sometimes called the Velocity（ $v$ ）however the calculations are exactly the same．

## Coordinates

MNU 3－18a I can use my knowledge of the coordinate system to plot and describe the location of a point on a grid．

Level 2 pupils should be able to use coordinates in the $1^{\text {st }}$ quadrant where both numbers are positive．Level 3 will then progress on to the four quadrants as pictured below．

Grid lines are numbered and points should be denoted $(4,5)$ with a comma between the numbers and using round brackets．

（x coordinate，y coordinate）
（Along，Up or Down）

## Bar Graph

MNU 3-21a I can display data in a clear way using a suitable scale, by choosing appropriately from an extended range of tables, chart, diagrams and graphs, making effective use of technology.

Bar graphs are used to display data. The horizontal axis (xaxis) should show the categories and the vertical axis (y axis) should show the frequency.

Example
Pupils were asked what their favourite colour was.


| Red | Blue | Green | Pink | Orange |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 6 | 3 | 4 | 2 |

Favourite Colours


Bar Charts need to include

- Correct scales
- Spaces in between the bars
- A heading
- Labels on both axes


## Bar graphs should show discrete data

Discrete data is data can be categorised into a classification. Discrete data is based on counts and there are only a few values possible.
For example
-the number of pupils in a class

- people's income
- favourite colour
- favourite animal


## Line Graphs

MNU 3-21a I can display data in a clear way using a suitable scale, by choosing appropriately form an extended range of tables, chart, diagrams and graphs, making effective use of technology.

Line graphs are made up of several points joined up with a line. The horizontal axis ( $x$ axis) show the continuation of time and the vertical axis ( $y$ axis) should show the frequency.

Number of ice creams sold over a week.

| Mon | Tue | Wed | Thur | Fri | Sat | Sun |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 80 | 60 | 55 | 70 | 30 | 180 | 300 |

Study Time


Line Graphs need to include

- Correct scales
- A heading
- Labels on both axes
- A continuous line drawn with a ruler


## A Line Graph should show continuous data

Continuous data is data that can be measured and broken down into smaller parts and still have meaning.

For example

- Money
- Temperature
- Time


## Remember

Discrete data is counted, Continuous data is measured

## Connecting Fraction, Percentages and Decimals

MNU 3-07a I can solve problems by carrying out calculations with a wide range of fractions, decimals fractions and percentages, using my answers to make comparisons and informed choices for real life situations.


## Percentages

MNU 3-07a I can solve problems by carrying out calculations with a wide range of fractions, decimals fractions and percentages, using my answers to make comparisons and informed choices for real life situations.

Percent means "out of one hundred"
To calculate simple percentages pupils need to convert percentages into fractions.

| $10 \%$ | $20 \%$ | $33 \frac{1}{3} \%$ | $50 \%$ | $66 \frac{2}{3} \%$ | $75 \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\mathbf{1}}{\mathbf{1 0}}$ | $\frac{\mathbf{1}}{\mathbf{5}}$ | $\frac{\mathbf{1}}{\mathbf{3}}$ | $\frac{\mathbf{1}}{\mathbf{2}}$ | $\frac{\mathbf{2}}{\mathbf{3}}$ | $\frac{\mathbf{3}}{\mathbf{4}}$ |

Find $33 \frac{1}{3} \%$ of 1500

$$
\begin{aligned}
& 33 \frac{1}{3} \% \text { of } 1500 \\
& \frac{1}{3} \text { of } 1500 \\
& =500
\end{aligned}
$$

## Harder Percentages

| Non Calculator Method | Calculator Method |
| :---: | :---: |
| Find some combination of simple percentages to make up the complex percentage. | Type into the calculator Percentages $=\% \div 100 \times$ amount |
| For example | Find 17\% of f 30 |
| $35 \%=3 \times 10 \%+5 \%$ | Find $17 \%$ of E30 |
| 19\% = $20 \%-1 \%$ | $17 \div 100 \times 30=£ 5.10$ |
| Find $17.5 \%$ of $£ 300$ |  |
| $10 \%=300 \div 10=£ 30$ |  |
| $5 \%=10 \% \div 2=30 \div 2=£ 15$ |  |
| $2.5 \%=5 \% \div 2=15 \div 2=£ 7.50$ |  |
| 17.5\% = £52.50 |  |

## Decimal

MNU 3-07a I can solve problems by carrying out calculations with a wide range of fractions, decimals fractions and percentages, using my answers to make comparisons and informed choices for real life situations.

| Adding and Subtracting Decimals <br> Calculate $16.8+8.49$ $\begin{array}{r} 16.80 \\ +08.49 \\ \hline 25.29 \\ \hline 11 \end{array}$ <br> Calculate 83.05-6.9 $\begin{array}{r} 7{ }^{12} 8.105 \\ -06.90 \\ \hline 76.15 \\ \hline \end{array}$ <br> The decimal points line up! | Multiplying and Dividing Decimals <br> Calculate $34.2 \times 3$ $\begin{array}{r} 34.2 \\ \times \quad 3 \\ \hline 102.6 \\ \hline 1 \end{array}$ <br> Calculate $1.24 \div 4$ $\begin{array}{rrrr} 0 & . & 3 & 1 \\ 4 & 1 & . & 12 \end{array} 4$ |
| :---: | :---: |

## Proper to Improper Fractions (Top heavy)

MTH 3-07c Having used practical pictorial and written methods to develop my understanding, I can convert between whole or mixed numbers and fractions.

$$
\begin{aligned}
& 1 \frac{3}{8} \text { Looks like } \\
& =\frac{11}{8} \\
& 2 \frac{5}{7}=\frac{2 \times 7+5}{7}=\frac{19}{7}
\end{aligned}
$$

## Simplifying Fractions

We should always check if a fraction can be simplified.

$$
\frac{2}{4} \div 2=\frac{1}{2} \quad \frac{3}{12} \div 3=\frac{1}{4} \quad \frac{15}{20} \div 5=\frac{3}{4}
$$

Sometimes when it is not obvious to see a higher factor there is nothing wrong with halving and halving again until you do notice a factor.

$$
\frac{28}{42 \div 2} \div \frac{14}{21} \div 7=\frac{2}{3}
$$

## Adding and Subtracting Fractions

MTH 3-07b By applying my knowledge of equivalent fractions and common multiples, I can add and subtract commonly used fractions.

You can only add and subtract fractions if they have the same denominator.

$$
\frac{3}{7}+\frac{2}{7}=\frac{5}{7} \quad \frac{8}{11}-\frac{3}{11}=\frac{5}{11}
$$

If they are not the same you have to multiply each fraction to make the same denominator.

$$
\frac{1}{2}+\frac{3}{5}=\frac{5}{10}+\frac{6}{10}=\frac{11}{10}=1 \frac{1}{10}
$$


V N

When adding it is easier to add the whole numbers then add the fractions.

$$
1 \frac{1}{5}+3 \frac{4}{7}=4 \frac{1}{5}+\frac{4}{7}=4 \frac{7}{35}+\frac{20}{35}=4 \frac{27}{35}
$$

## Scientific Notation or Exponentials

MTH 3-06a Having explored the notation and vocabulary associated with whole number powers and the advantages of writing numbers in this form, I can evaluate powers of whole numbers mentally or using technology.

In mathematics scientific notation consists of a number between 1 and 10 multiplied by some power of 10

## Writing in scientific notation

Write 39,000,000 in scientific notation?
3.9000000
$3.9 \times 10^{7}$
The point moves 7 places to the left and as it is a big number it is a positive power

Write 0.0000000052 in scientific notation?
$0.000000005 \cdot 2$
$=5.2 \times 10^{-9}$

The point moves 9 places to the right and as it is a small number it is a negative power

More Examples
$27800000=2.78 \times 10^{7}$

$$
600000=6 \times 10^{5}
$$

$$
0.0000789=7.89 \times 10^{-5}
$$

Writing whole numbers from Scientific notation
Write $3.8 \times 10^{5}$ in full?

Use the first part of the scientific notation and count how many places the decimal is going to move.

Fill in the spaces with zeros

Then write the number out properly

## 3.8

3.80000 •

380000

More examples
$4.86 \times 10^{6}=4,860,000 \quad 7.6548 \times 10^{8}=765,480,000 \quad 7.914 \times 10^{-7}=0.0000007914$

## How Science do it -

Science uses the term - exponential and often they only use 10 raised to a power.
$10^{3}=10 \times 10 \times 10=1000$
$10^{-3}=0.001 \quad 10^{6}=1000000 \quad 10^{-6}=0.000001$

## Direct Proportion

MNU 3-08a I can show how quantities that are related can be increased or decreased proportionally and apply this to solve problems in everyday contexts.

If two things are directly proportional it means as one rises the other rises also.

When you buy something the more you buy the more is costs.


Example
If 8 sweeties cost $£ 2.56$, how much will 13 cost?
8 Sweeties = £2.56
1 Sweet $\quad £ 2.56 \div 8=£ 0.32$
13 Sweeties $£ 0.32 \times 13=£ 4.16$

## Indirect proportion

If two quantities are indirectly proportional then one quantity increases and the other decreases.

For example
The more workers on a job
the shorter the time

Graph of
Indirect proportion

## Example

If it takes 5 workers 30 hours to build a wall how long will it take 3 workers?

5 workers 30 hours
1 worker $=5 \times 30=150$
3 workers $=150 \div 3=50$ hours

## Ratio

MNU 3-08a I can show how quantities that are related can be increased or decreased proportionally and apply this to solve problems in everyday contexts.

Ratio is a way of comparing two or more quantities.
Simplifying ratio works the same as simplifying fractions.


The simplified ratio is $4: 3$

## Probability

MNU 3-22a I can find the probability of a simple event happening and explain why the consequences of the event, as well as its probability, should be considered when making choices.

How likely something is to happen


Probability of an event = Number of ways it can happen.
Total number of possible outcomes

Example
Tossing a head with a coin
$P($ head $)=\frac{1}{2}$
Throwing a 4 on a die
$P(4)=\frac{1}{6}$

## Multiplication Grid

MNU 3-03b I can continue to recall number facts quickly and use them accurately when making calculations.

| $\Sigma \mathcal{1}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ | 3 | $\mathbf{4}$ | $\mathbf{5}$ | 6 | $\mathbf{7}$ | $\mathbf{8}$ | 9 | 10 | 11 | 12 |
| $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{4}$ | 6 | $\mathbf{8}$ | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| $\mathbf{3}$ | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |
| $\mathbf{4}$ | $\mathbf{4}$ | $\mathbf{8}$ | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
| $\mathbf{5}$ | $\mathbf{5}$ | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
| $\mathbf{6}$ | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |
| $\mathbf{7}$ | $\mathbf{7}$ | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 |
| $\mathbf{8}$ | $\mathbf{8}$ | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | $\mathbf{8 8}$ | 96 |
| $\mathbf{9}$ | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 |
| $\mathbf{1 0}$ | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
| $\mathbf{1 1}$ | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 |
| $\mathbf{1 2}$ | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |

## Useful Websites

www.sumdog.com
All S1 and S2 pupils have been issued with a username and password.
https://blogs.glowscotland.org.uk/nl/airdrieacadmaths/workouts/
The password is mathspupil
http://www.mathsrevision.com/

