Variation.

You should be able to: Calculate direct variation in various situations.

Variation is the algebra form of proportion. At General Level you will only work with direct variation.

Example 1: This distance walked by a man varies directly with the number of minutes he walked.
a) Write this is variation form
b) Make it into an equation.
c) If the man walked for 240 metres in 3 minutes, find k.
d) Find how far he can walk in 5 minutes.

a) $D \alpha T$

b) $\quad D=k T$
$D=k T$
$240=k \times 3$
c)
$k=\frac{240}{3}$
$\mathrm{k}=80$
$D=80 T$
d) $D=80 \times 5$
$D=400 \mathrm{~m}$
a) This means D varies directly with T. Meaning that as D increases so does T.
b) We now make it into an equation and introduce a constant that we call k.
c) Here we are given a condition when the two quantities match up, and the goal is to find k.
d) Now we use k in the formula. We are given a time, it is our goal to now find D.

Example 2: The tension T in a spring varies directly with the Extension (e)
a) Find a formula connecting $T \& e$
b) Find k when $T=27 \& e=4.5$
c) Find T when $e=5.8$

a) Tae

$\mathrm{T}=\mathrm{ke}$
$T=k e$
$27=k \times 4.5$
b)
$k=\frac{27}{4.5}$
$\mathrm{k}=6$
$T=6 e$
c) $\quad T=6 \times 5.8$
$\mathrm{T}=34.8$
a) This means T varies directly with e. Meaning that as T increases so does e. We now make it into an equation and introduce a constant that we call k.
b) Here we are given a condition when the two quantities match up, and the goal is to find k.
d) Now we use k in the formula. We are given the value of e it is our goal to now find T.

