Trigonometry.
You should be able to: Measure the bearing of B from A Use the Sine, Cosine \& Tangent Rules for Right angled triangle.

Example 1: Find the bearing of B from A in the following diagram.

300°

In the diagrams above we are looking for the 3 figure bearing of B from the position of A. To do this, we extend our line to make an F angle. And then use our knowledge of Corresponding angles to find the total angle marked with a red line.

Example 2: Find the size of the side marked x.

Remember when working with trigonometry, you must first label your sides. And then use this to decide which of the trig ratios you must use from SOH-CAH-TOA.

Example 3: Find the size of the side marked y.

Opp		SOH-CAH-TOA
		$\begin{aligned} & \cos x^{\circ}=\frac{A d j}{H y p} \\ & \cos 48^{\circ}=\frac{y}{12.3} \\ & x=\cos 48^{\circ} \times 12.3 \\ & x=8.23 \mathrm{~cm} \end{aligned}$
	Adj	

Don't forget that when finding the size of a side, you must round to 2 decimal places unless told otherwise.

Example 4: Find the size of the side marked z.

Opp	SOH -CAH-TOA $\operatorname{Sin} x^{\circ}=\frac{\text { Opp }}{H y p}$ $\sin 63^{\circ}=\frac{z}{7.9}$ $x=\operatorname{Sin} 63^{\circ} \times 7.9$ $x=7.04 m$
$\mathbf{A d j}$	

Example 5: Find the size of the angle marked a°

Example 6: Find the size of the angle marked b°

Remember to always give angle to 1 decimal place unless otherwise stated.

To save the mistake of rounding too early at this stage when you divide the sides before finding the angle, you should round to 3 decimal places. Better still, keep the value on your calculator and find the angle from that.

Example 7: Find the size of the angle marked c°
SOH -CAH-TOA

Adj

