Solving Equations

You should be able to: Solve Simple Equations.
Solve Simple Inequalities.

Example 1:

Solve the equation: $x+3=7$

Here you can use one of two methods:
(1) Balancing Method
(2) Change the side, change the sign.
(1) Treat the equation like an old fashioned scale. To balance the scale, what you do to one side, you must and always do to the other.
i.e. $x+3=7$
$-3-3$
$x=7-3$

$$
x=4
$$

(2) Or use the method of change the side, change the sign to swap the numbers over to the other side so that we just get x on its own.

$$
\begin{aligned}
& \text { As soon as a number flies } \\
& \text { over an equals its sign changes. } \\
& \text { all +'s become -'s and } \\
& \text { all -'s become +'s }
\end{aligned}
$$

Example 2

Solve the equation: $2 x=6$

Remember $2 x$ means $2 \times x$. So to get rid of the multiplied by 2 you just divide by 2. And because it is an equation. What you do to one side you do to the other.
i.e. $2 x=6$
$\div 2 \div 2$
$x=3$

Example 3

Solve the equation: $3 x+4=13$

Now put examples $1 \& 2$ together. First get rid of the single number via Example 1. And divide by the multiple as per Example 2.

So	$3 x+4=13$
$-4 \quad-4$	
$3 x=13-4$	
$3 x=9$	
$\div 3 \quad \div 3$	
$x=3$	

Note: Always remember to do the check to putting the number back into the equation to check if it's correct.

Example 4

Solve $=3 x-5=x+11$

Here you must get all the x 's on one side \& all the numbers on the other. You must do this in steps and not try and do it all at once. Which can get confusing.

So: $\quad 3 x-5=x+11$
(1) $3 x-5-x=11$
(2) $3 x-x=11+5$
(3) $2 x=16$
(4) $\div 2 \div 2$
$x=8$
(1) Take the x over to the left
(2) Take the -5 over to the right side
(3) Simplify both sides
(4) Divide both sides by 2

