Similarity.

You should be able to: Find the ratio of sides of similar shapes. Find the ratio of areas of similar shapes.

Shapes are congruent when they are exactly identical.

These two shapes are congruent.

Shapes are similar when they have the same general shape, but one is smaller than the other and the dimensions are different by the exact same scale factor.

These two shapes are similar, because the one on the right its dimensions multiplied by the exact same scale factor.

These two shapes are not similar since the dimensions have been multiplied by different values, therefore giving a distorted shape.

Example 1. Find the length of side x.

Here we have a mathematical enlargement. To first of all find out the scale factor that has been used in this example we must use the ratio \rightarrow

We now look at the corresponding sides that we know, i.e. the 4 cm and the 8 cm and apply it to this formula

This means there has been a multiplication of 2 in the enlargement. So if $4 \times 2=8$. Then we can work out what x is.

Enlargement $S F=\frac{\text { Bigger Value }}{\text { Smaller Value }}$

Scale Factor $=\frac{8}{4}$
Scale Factor $=2$

$$
9 \times 2=18 \mathrm{~cm}
$$

Example 2. Find the length of side y.

Here we have a mathematical reduction. To first of all find out the scale factor that has been used in this example we must use the ratio \rightarrow

We now look at the corresponding sides that we know, i.e. the 20 cm and the 5 cm and apply it to this formula M Doran March '08

$$
\text { Reducation SF }=\frac{\text { Smaller Value }}{\text { Bigger Value }}
$$

Scale Factor $=\frac{5}{20}$
Scale Factor $=\frac{1}{4}$

This means there has been a multiplication of $\frac{1}{4}$ in the reduction. So if $20 \times \frac{1}{4}=5$. Then we can work out what y is.

$y=1 \mathrm{~cm}$

Example 3. Find the area marked as x in the following similar shape

To find the area of a similar shape is the same as finding a dimension, except all you need to do is square your scale factor once you find it since area is measured in square units ${ }^{2}$. It is an enlargement, therefore we use the enlargement ratio.

We have now found the scale factor. Since it is an area we are finding, we must now square the number and then multiply it by the smaller area

Enlargement $S F=\frac{\text { Bigger Value }}{\text { Smaller Value }}$

$$
\begin{aligned}
& \text { Scale Factor }=\frac{18}{6} \\
& \text { Scale Factor }=3
\end{aligned}
$$

$x=360 \mathrm{~cm}^{2}$

When we have similar triangles it is important to remember that for triangles to be similar the sides must be multiplied by the same scale factor, just like the examples above, and the angles within the triangle must remain exactly the same.

$$
\begin{aligned}
& 3^{2} \times 40 \\
= & 9 \times 40 \\
= & 360 \mathrm{~cm}^{2}
\end{aligned}
$$

