Multiplying \& Factorising Expressions

You should be able to: - Multiply out brackets and collect like tens.

- Factorise Expressions back into brackets.

Example 1

Multiply out the following bracket:

$$
\begin{aligned}
& 3(x+2) \\
& 3(x+2) \\
& =3 x+6
\end{aligned}
$$

To multiply out a bracket You multiply every single thing inside the bracket by what's outside.

Example 2

Multiply out the following bracket:

$$
\begin{aligned}
& 5(a-3) \\
& 5(a-3) \\
& =5 a-15
\end{aligned}
$$

Example 3

Multiply out the following bracket:

$$
\begin{aligned}
& 2(\mathrm{~m}+2 \mathrm{k}) \\
& =2 \mathrm{~m}+4 \mathrm{k}
\end{aligned}
$$

Example 4

Multiply out the following:

$$
\begin{aligned}
& 10(x+9)-10 \\
& 10(x+9)-10 \\
& =10 x+90-10 \\
& =10 x+80
\end{aligned}
$$

Example 5

Factorise the following expression:

$5 x+15$
$5 x+15$
$=5(x+3)$

This number goes outside the bracket. You divide everything by that value.

Example 6

Factorise the following expression:

$$
\begin{gathered}
4 x+18 \\
4 x+18 \\
=2(2 x+9) \\
\hline
\end{gathered}
$$

$$
\mathrm{HCF}=2
$$

Example 7

Factorise the following expression:

$6 x^{2}+12 x$
$6 x^{2}+12 x$
$=6 x(x+2)$
:---:

N.B. Remember to check your answer by multiplying out the brackets. You should get back to the question

Factorising is the opposite process to breaking open brackets. We take out the highest common factor of the tens.

We also have another
common factor of x to take out

