National 5 Mathematics Homework
 Exercise 6

The Straight Line

1. The line $y=3 x+4$ has gradient of 3 and meets the y axis (y intercept) at the point $(0,4)$.
Write down the value of the gradient and y intercept for the following lines.
(a)
$y=5 x-3$
(b) $y=-3 x+5$
(c) $y=5-1 / 2 x$
(6)
2. Write down the equation of the line that has a gradient of 4 and cuts the y-axis at -2. (2)
3. Find the equation of the line $A B$ which goes through the points $A(-5,-3)$ and $B(7,2)$
4. Rearrange into $y=m x+c$ and then write down the gradient and y - intercept of each equation.
(a)
$8 x+4 y=20$
(b) $9 x+5 y=15$
(c) $10 x-5 y+20=0$
5. Find the equation of the line that is:-
(a) Parallel to a line with gradient of 4 and goes through the point $(7,4)$
(b) Parallel to the line $y=3 x+6$ and goes through (4, -5)
(c) Parallel to the line $3 x+6 y=12$ and goes through $(-5,-7)$

National 5 Mathematics Homework Exercise 7

Equations and Inequalities

1. Solve:-
(a) $9 x-1=7 x+15$
(b) $2(x+3)=11$
(c) $2(1+5 x)=3 x+51$
2. By first eliminating the fraction solve these equations:-
(a) $\frac{2}{3} x-4=6$
(b) $\frac{2}{3}(2 x+4)=2$
(c) $\frac{x+2}{3}+\frac{x+3}{4}=1$
(8)
3. The photographs shown have the same area.

Form an equation, and solve it to find the dimensions of each photograph.

4. Solve these inequalities:-
(a) $5 x+8 \leq 3 x+18$
(b) $2(2 x+4) \leq 36-6 x$
(c) $15-7 x \geq 12-x$

National 5 Mathematics Homework
 Exercise 8

Simultaneous Equations

1. Solve these simultaneous equations algebraically:
(a) $\begin{aligned} 5 y+4 x & =14 \\ 3 y-4 x & =2\end{aligned}$
(b) $\begin{aligned} & 2 y+3 x=12 \\ & 5 y-x=13\end{aligned}$
(c) $\begin{aligned} 3 x+2 y & =24 \\ 2 x+3 y & =26\end{aligned}$
2. Fiona and Ross each book in at the Sleepwell Lodge.
(a) Fiona stays for 3 nights and has breakfast on 2 mornings. Her bill is $£ 230$. Write down an algebraic equation to illustrate this.
(b) Ross stays for 5 nights and has breakfast on 3 mornings. His bill is $£ 380$. Write down an algebraic equation to illustrate this.
(c) Find the cost of one breakfast.
3. (a) A cinema has 300 seats which are either standard or deluxe.

Let x be the number of standard seats and y be the number of deluxe seats.
Write down an algebraic expression to illustrate this information.
(b) A standard seat costs $£ 4$ and a deluxe seat costs $£ 6$.

When all seats are sold the ticket sales are $£ 1380$.
Write down an algebraic expression to illustrate this information.
(c) How many standard seats and how many deluxe seats are there in the cinema?

Changing the Subject

1. Make x the subject of the formulae.
(a) $x-b=5$
(b) $12=n-x$
(c) $\frac{x}{5}=6$
(d) $a=\frac{d}{x}$
(e) $5 x+4=m$
(f) $f=5-2 x$
(g) $\frac{x+5}{4}=m$
(h) $m=2(x+f)$
(i) $\frac{x+y}{m}=\frac{4 m}{5}$
(j) $x^{2}+y=6$
(k) $y=\frac{3}{5}(x-z)$
(l) $p=\frac{2 \sqrt{x}}{3}$
2. The formula for finding the volume of the cone is $v=\frac{1}{3} \pi r^{2} h$.
(a) Make h the subject of the formula.
(b) If the volume of the cylinder shown is $3140 \mathrm{~cm}^{3}$ and the radius is 10 cm , find the height of the cylinder.

(4)
3. This can of Cola has a total surface area given by the formula $A=2 \pi r(r+h)$
(a) Make h the subject of the formula.
(b) If the surface area of the can is $596.6 \mathrm{~cm}^{3}$ and the radius is 5 cm , what is the height?

Sketching Quadratics

1. Write down the equation representing each parabola. (Each one is in the form $y=k x^{2}$ or $y=(x+a)^{2}+b$
a)

b)

c)

2. Sketch the graph of the following quadratic functions showing where it cuts both the x and the y axis and also the coordinates of the turning point.
(a) $y=(x+4)(x-2)$
(b) $y=x^{2}+6 x-16$
3. Sketch the graph of the following quadratic functions showing where it cuts the y axis and also the coordinates of the turning point.
(a) $y=10-(x+2)^{2}$
(b) $y=x^{2}+10 x-4 \quad$ *Hint: complete the square first
4. For each of the quadratic functions write down:-
(i) The coordinates of the turning point and its nature
(ii) The equation of the axis of symmetry.
(a) $y=(x+6)^{2}-4$
(b) $y=12-(x-3)^{2}$
(6)
