

Contents
Development Methodologies	4
Analysis	5
Assumptions	5
Inputs	5
Processes	5
Outputs	5
Design	6
Data types and structures	6
Structure diagrams / Flowcharts	8
Pseudocode	8
Efficient solutions	10
User interface design	11
Implementation (data types and structures)	12
Data types and structures	12
One dimensional (1-D) arrays	12
Implementation (computational constructs)	14
Assignment statements	14
Arithmetic operators	14
Concatenation	14
Inequalities	15
Conditions	15
Logical operators	15
Selection constructs (IF … THEN … ELSE … END IF) using conditions	15
Fixed loops	16
Conditional loops	16
Pre-defined functions and parameters	17
Implementation (algorithm specification)	18
Output	18
Input validation	18
Running total (using a loop) and finding the average	18
Traversing a 1-D array: Linear search	18
Traversing a 1-D array: Counting Up	19
Nested loops	19

Testing	20
Test data	20
Errors	20
Evaluation	21
Fitness for purpose	21
Efficient use of coding constructs	21
Robustness	22
Readability of code	22

Original version courtesy of
Alison Cowie
Portobello High School, Edinburgh

[bookmark: _Toc482217581][bookmark: _GoBack]
Development Methodologies

Developing a piece of software usually has six phases. These are:

1. Analysis
2. Design
3. Implementation
4. Testing
5. Documentation
6. Evaluation

For example, Andrea is a Project Manager at AppsForLawyers. Jenny is a manager in a law firm and has asked Andrea at AppsForLawyers to develop a piece of software that will automate some legal documents for her firm.

Analysis: Andrea and Jenny will meet to decide exactly what Jenny wants the software to do. They will create a document called the software specification that lists the functional requirements of the software. This is often done by identifying the inputs, processes and outputs of the software.

Design: Andrea will pass the software specification to her design team who will plan the data structures to hold the data that will be processed by the software. They will also plan the user interface and they will plan the modules of program code that will be required.

Iteration: Jenny may be involved in checking the design and she may ask for changes at the design phase based on what she sees and this could mean going back to the analysis phase with Andrea. Iteration means ‘to do over again’. The software development process is described as iterative because each stage may have to be revisited as a result of new information coming to light.

Implementation: The design is passed to the programmers who write program code to implement the functional requirements of the software. The programmers may create prototypes for Jenny to see. If the programmers need the design clarified for them, Jenny and Andrea may have to meet with the design team again (iteration). This may even require them to go back to the original analysis (iteration).

Testing: The programmers will be testing the code continually while they are working. When they are finished, Andrea will make up a test team from AppsForLawyers who can test the software as a whole. They probably won’t know the actual code in detail – this is sometimes called alpha testing. Once again, this may throw up issues that require previous phases to be revisited (iteration). For example, the programmers may have to re-code some parts. Finally, the software will be passed to Jenny’s law firm for beta testing.

Documentation: This includes a technical guide and a user guide. The technical guide explains how to install the software and what the system requirements are e.g. operating system, amount of memory etc. The user guide will help the user to use the software successfully.

Evaluation: This is to decide whether the software is fit for purpose. That means: Does it meet its functional requirements? Is it robust (runs successfully without crashing)? Is it readable code in case people need to edit it?

[bookmark: _Toc482217582]Analysis

In reality, for big software development projects, the analysis phase can take months to complete. Let’s look at a much simpler example:

Mrs Bird is taking 15 students on a school trip. The cost of the trip is £50 but the students can pay by installment. Mrs Bird has called a meeting to take the first installment and she wants a piece of software (a program) to let her enter the amount paid by each student. At the end of the meeting she would like to be able to display how much each student has left to pay. She also wants to know how many students still have the full £50 left to pay

The analysis for this program might look like this:

[bookmark: _Toc482217583]Assumptions
	Assumptions often arise as the analysis proceeds. For example, “I will assume …”
· “all 15 students are at the meeting”
· “some students may have forgotten to bring the money with them”
· “that the student’s name will need to be input as well as the amount they pay”

[bookmark: _Toc482217584]Inputs
Each student’s name (15 students) and store
The amount paid by each student

[bookmark: _Toc482217585]Processes
	Validate the amount paid in the range 0 to 50 inclusive
	Subtract the amount paid from 50 and store
	Count up how many students still have £50 left to pay
	

[bookmark: _Toc482217586]Outputs
	Display list of names with amount still owing
	Display number of students who still have the full £50 left to pay

[bookmark: _Toc482217587]Design

[bookmark: _Toc482217588]Data types and structures

Example 1: You are asked to write a program that finds the average age of ten people and whether any of the 10 people are of average age

One of your first steps would be to draw and define the data structures (the holding places) for the data that will be used. You should include example data or test data in the diagram.

 	
age
 age : array[1..10] of integer

The variables are stored as follows:

total
270
averageAge
27
anyOfAverageAge
TRUE
 total : integer
 averageAge : integer
 anyOfAverageAge : boolean

	
											

Example 2: The data structures for Mrs Bird’s school trip (see page 5)
	1
	“Bilal”studentName

	2
	“Harpreet”

	3
	“Joshua”

	4
	“Kieran”

	5
	“Lucy”

	
	.
.
.

	12
	“Paolo”

	13
	“Robin”

	14
	“Yousif”

	15
	“Zach”

	1
	25.0amountLeft

	2
	35.0

	3
	20.0

	4
	16.75

	5
	50.0

	
	.
.
.

	12
	40.0

	13
	0.0

	14
	50.0

	15
	15.0

stillToPayFull

2

stillToPayFull : integer

 amountLeft : array[1..15] of real
 studentName : array[1..15] of string

Data structures are the groups of storage locations in memory that will be used by the software. The choice of name is very important – the names of the data structures can significantly help people read and understand the code
Once the data structures have been defined (e.g. array), the modules of code are planned out. This might be in the form of a diagram like a flowchart or a structure diagram or it might be in pseudocode

[bookmark: _Toc482217589]Structure diagrams / Flowcharts

This uses specially shaped boxes to show loops, decisions etc. in the program. The boxes are linked together to show how the program fits together. Apart from flow charts and structure diagrams, other graphical design methods include linked charts and block diagrams

[image: http://upload.wikimedia.org/wikipedia/commons/7/7b/JSP_RLE_program.png][image: http://philosophy.hku.hk/think/strategy/flow-eg.gif]

Advantages: 	the structure and program flow is very clear	
Disadvantages: adding more detail means the diagrams can become very complicated

[bookmark: _Toc482217590]Pseudocode

Pseudocode is an English-like language used to define problems. It can be laid out to reflect the structure of the actual program

Advs: 	close to English >> easy to understand
easy to stepwise-refine the design (break the steps down into smaller and smaller steps)

e.g. 	RECEIVE centigrade FROM KEYBOARD
		SET fahrenheit TO (9 / 5) * centigrade + 32
		SEND fahrenheit TO DISPLAY

The pseudocode shown above is written in a pseudocode called Haggis. You could write this pseudocode as follows:
receive centigrade from keyboard
set fahrenheit to (9 / 5) * centigrade + 32
send fahrenheit to display

input centigrade
fahrenheit = (9 / 5) * centigrade + 32
output fahrenheit

			 or…
		

Pseudocode, structure diagrams and flowcharts are just some of the design tools used to ‘think through the action of program code’ before having to actually program it in a specific high level language such as Python or Java.
Pseudocode for Mrs Bird’s program: (written in Haggis pseudocode) (see page 5 and page 7)

		SET stillToPayFull TO 0
FOR studentNumber FROM 1 TO 15 DO
			RECEIVE studentName[studentNumber] FROM (STRING) KEYBOARD
			RECEIVE installment FROM (REAL) KEYBOARD
			WHILE (installment < 0) OR (installment > 50) DO
				SEND “Invalid data – out of range” TO DISPLAY
				RECEIVE installment FROM (REAL) KEYBOARD
			END WHILE
			SET amountLeft[studentNumber] TO 50 – installment

			IF amountLeft[studentNumber] = 50 THEN
				SET stillToPayFull TO stillToPayFull + 1
			END IF

		END FOR

		
FOR studentNumber FROM 1 TO 15 DO
	SEND studentName[studentNumber] TO DISPLAY
	SEND amountLeft[studentNumber] TO DISPLAY
END FOR

SEND stillToPayFull TO DISPLAY

[bookmark: _Toc482217591]Efficient solutions

Efficient solutions often involve using loops. If the same action is carried out over and over again, it would be inefficient to keep writing the same code over and over again in the program.

Suppose we wanted to add 20% to all the prices of 2000 hats on a shopping site. It wouldn’t be efficient to write code like this:

SET hatPrice[1] TO hatPrice[1] * 1.20
SET hatPrice[2] TO hatPrice[2] * 1.20
SET hatPrice[3] TO hatPrice[3] * 1.20
.
.
.
SET hatPrice[2000] TO hatPrice[2000] * 1.20

It would be better to write this:

FOR hatNumber FROM 1 TO 2000 DO
	SET hatPrice[hatNumber] TO hatPrice[hatNumber] * 1.20
END FOR

Why is the second way more efficient?

Editing: The second way is more efficient from an editing point of view (i.e. time). It is easier to read than pages of the same statement, and, if you needed to change the percentage, then only one line of code needs to be edited instead of 2000 lines

Memory usage: It is more efficient from a memory point of view. Each line of code is held in memory while the program is running so to have just 3 lines instead of 2000 lines of code in memory means that memory usage is more efficient

Processor time: A processor-time efficient program will be one where the processor is not busier than it needs to be. This is especially important in time-critical situations (like a nuclear reactor). When a program is translated into machine code, a loop can be translated into machine code that takes less processor time to run than code that’s carrying out the same task but without a loop

[bookmark: _Toc482217592]User interface design

	Here are some examples of wireframes of user interfaces

[image:]
[image: Image result for free wireframe for software examples]These are wireframe diagrams for apps
on a mobile device e.g. smart phone

This is a wireframe diagram for a webpage

[bookmark: _Toc482217593]Implementation (data types and structures)

[bookmark: _Toc482217594]Data types and structures

Data structures holds data for the programmer to use. They are called variables in programming.

Different types of structures can be created using the storage locations in memory. The simplest structures are variables that hold just one single value.

global count	 	//integer		(a number with no fractional part e.g. 20, -36)

global average		//real 			(a number with a fractional part e.g. 65.7)

global keypress 	//char			(a single character e.g. “R” or “*” or “8”)

global name		//string		(a group of characters e.g. “Allison Cowie” “EH16 5PJ”)

global passed		//boolean		(either TRUE or FALSE)

[bookmark: _Toc482217595]One dimensional (1-D) arrays

An array is used when a list of values is required rather than one single one. It is a group of storage locations all storing the same type of data. The group is given a group name and an index number is used to determine which element is being referenced.

e.g. 	put “0602” into studentID[4]		//studentID is a one dimensional array of 6 strings

RAM

	
	
	
	1
	2
	3
	4
	5<<		studentID array	 	 >>

	6
	
	
	

	…
	
	
	
	
	
	“0602”
	
	
	
	
	…

Square brackets are often used to indicate an array		

global marks	//array[20] of integer	(a list of integers)

put 58 into marks[1] //assigns the value 58 to element #1 of the array called “marks”

put 96 into marks[15] //assigns the value 96 to element #15 of the array called “marks”

put total + marks[10] into total
//adds the value of the 10th element of “marks” to the variable called “total”

Note that some languages start their arrays at 0 rather than 1.
This means that arrays can be indexed from 0 to 9 or arrays can be indexed from 1 to 10.

For example:

repeat with product = 0 to 9 //loop 10 times	
put cost[product] * 0.50 into cost[product]
end repeat 	//multiplies all 10 elements of “cost” by 50%

cost

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	3.45
	6.50
	7.75
	1.25
	5.00
	2.50
	4.35
	7.20
	2.00
	4.10

	1-D stands for one-dimensional 		(For interest: 2-D would be two-dimensional)	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

In the above example

	cost[0] contains the value 3.45
cost[5] contains the value 2.50
The 4th value in the cost[] array is 5.00

[bookmark: _Toc482217596]Implementation (computational constructs)

[bookmark: _Toc482217597]Assignment statements

This is when a value is given to a variable (a variable is the name of a storage location in memory)

	put 58 into total		// total is a variable (storage location in RAM) holding the value 58

	put “Paul Sinclair McTavish” into nameUser
		//direct assignment to the string variable called “nameUser”

	put total / 20 into average	
	 //divides the value of the variable “total” by 20 and stores the result in the variable called “average”

ask “please enter your name”		//prompts the user to enter their name
if the result = “cancel” then exit to top		//allows the user to exit the program
put it into nameUser			// data is input from the keyboard
	 	// the value entered by the user is stored in a string variable called “nameUser”
	
[bookmark: _Toc482217598]Arithmetic operators

These are:	 +	-	*	/	^	

e.g. 	put 1/2 * length * breadth into area

e.g. 	put priceOfCamera – priceOfCamera * 0.05 into priceOfCamera

^ is used for exponents. For example, 2^8 = 256

[bookmark: _Toc482217599]Concatenation

The & symbol is used to combine strings and arrays.

For example, concatenating two strings 	put “hello “ & “Mary” into greeting

Here, the variable greeting will be assigned the value “Hello Mary”

For example, concatenating two arrays
		
girls = ["Cecilie", "Lone"];
boys = ["Emil", "Tobias", "Linus"];
cousins = ["Robin"];
children = girls & boys & cousins;

The values of the children array will be: ["Cecilie", "Lone", "Emil", "Tobias", "Linus", "Robin"]
[bookmark: _Toc482217600]Inequalities

<> (not equals to)	> (greater than)	< (less than) 	

<= (less than or equal to)	>= (greater than or equal to)

[bookmark: _Toc482217601]Conditions

Simple condition – just one set of brackets 	e.g. (cost < 15.99)

Complex condition – more than one set of brackets joined by logical operators
		
		e.g. if (cost > 15.99) AND ((age <= 8) OR (age >= 65)) then

		e.g. if (temperature > 100) OR NOT(state = “working”) then

[bookmark: _Toc482217602]Logical operators

These are:	AND	OR	NOT

e.g.	repeat until (time > 0) AND (time < 20) AND NOT(time = 10)

[bookmark: _Toc482217603]Selection constructs (IF … THEN … ELSE … END IF) using conditions

if (cost < 5) then	//simple condition- if the cost is less than 5
answer “That’s quite cheap!”
end if

if (age >= 17) then					//if the variable “age” is at least 17
answer “ you are old enough to drive”		//program outputs “you are old enough…”
else 							//and, if the variable “age” is less than 17,
answer “sorry – not old enough to drive yet”	//program outputs “sorry – not …”
end if

if (scoreOne > 60) AND (scoreTwo > 60) then	//complex condition – if score1 and score 2 are greater than 60
if (age >= 10) AND (age <= 14) then //complex condition – if age is >=10 and <=14
			answer “Congratulations - you are through to the Junior Final”
		else 	if (age >= 15) AND (age <= 18) then //complex condition – if age is >=15 and <=18
answer “Congratulations - you are through to the Senior Final”
else
answer “You are not the right age to be in this competition!”
end if
end if
else
		answer “Sorry – you didn’t score high enough to be in either Final
end if

[bookmark: _Toc482217604]Fixed loops

These are used when code is to be repeated an exact number of times

e.g.	put 0 into total
	repeat with count = 1 to 10		//loop for all 10 people
			ask “What is your age?”
			put it into ageUser
			if ageUser >= 18 then add 1 to total
		end repeat

e.g.	repeat with questionNumber = 1 to 20	//loop for all 20 questions
			put question[questionNumber] & “?” & return after field “Questions display”
	end repeat
		
The variable “questionNumber” is used as an index into the array called “question” e.g. question[questionNumber]

[bookmark: _Toc482217605]Conditional loops

These are used when it is not known how many times a block of code is to be repeated

ask “please enter your password: “			//prompts the user to enter a password
put it into password					//stores the value entered in the variable password
repeat until (password = “A1rdr13”)			//start of conditional loop
		answer “That’s incorrect – try again”	//error message to alert user
		ask “please re- enter your password: “	//prompts the user to enter password again	
		put it into password				//stores the password entered
end repeat						//end of conditional loop

[bookmark: _Toc482217606]Pre-defined functions and parameters

These are modules of code that have already been written for programmers to use. They are held in a library of pre-defined functions and save the programmer time when coding. It also means that the programmer does not need to know in detail how to write all parts of the program

Examples of some common pre-defined functions: length, cos, sin, div, sqrt, round, random, integer

Quite often, the programmer needs to pass some information to the module e.g. the value 35 is passed to the square root function like this:	sqrt(35)	In this example, 35 is called the parameter.
5.916079783099616

e.g. 	put sqrt(35) into field “display”					(displays the square root of 35)

5.92

e.g. 	put round(sqrt(35), 2) into field “display”				(displays answer to 2 dp)

e.g.	put random(100) into guess		

This function will assign a random number between 1 and 100 to the variable called guess. The parameter, 100, is in brackets

e.g.	put length(“EH15 3AS”) into numChars		

This function works out the number of characters in the parameter (text string). The parameter is the string “EH15 3AS” and the number of characters in “EH15 3AS” is 8 so the value 8 is assigned to the variable called numChars

[bookmark: _Toc482217607]Implementation (algorithm specification)

[bookmark: _Toc482217608]Output

put “Welcome, ” & nameUser & “!” & return into field “Welcome message”

//outputs the word Welcome and the value of the string variable “nameUser” followed by an exclamation mark to the display field. The concatenation operator & is used to combine values

put empty into field “Student marks”
repeat with count = 1 to 20		//”count” is used to process each student in turn
		put count & “:” & tab & mark[count] & return after field “Student marks”
end repeat

//clears the display field and then outputs the number of each of the 20 students and their corresponding mark to the display field. A new line is taken between each one.

[bookmark: _Toc482217609]Input validation

ask "How many students? " 	//allowing 1 to 5 students
if the result = "cancel" then exit to top
put it into numStudents
repeat until (numStudents >= 1) AND (numStudents <= 5)	//validating input in range 1 to 5 inclusive
 answer "Invalid number - try again"
 ask "How many students? "
 if the result = "cancel" then exit to top
 put it into numStudents
end repeat

[bookmark: _Toc482217610]Running total (using a loop) and finding the average

put 0 into total			//initialises the variable “total” to 0
repeat with count = 1 to 20	//loops for each of the 20 students
	put total + marks[count] into total 	//adds each student’s mark to the total
end repeat			//“count” is used as the index into the array
put total / 20 into average	//calculates the average mark by dividing the total by the number of students

[bookmark: _Toc482217611]Traversing a 1-D array: Linear search

	ask “Enter your search value”
	put it into target
repeat with count = 1 to 100
		if name[count] = target then answer “Yup – that person is in the list”
end repeat

[bookmark: _Toc482217612]Traversing a 1-D array: Counting Up

 	put 0 into total
repeat with count = 1 to 10		
		if age[count] >= 18 then add 1 to total	//counts how many people are at least 18
end repeat

[bookmark: _Toc482217613]Nested loops

repeat with classNumber = 1 to numberOfClasses
ask "How many students in class number “ & classNumber & “?" 	
if the result = "cancel" then exit to top
put it into numStudents
repeat until (numStudents >= 1) AND (numStudents <= 5)	//validates for 1 to 5 students
 answer "Invalid number - try again"
 ask "How many students? "
 if the result = "cancel" then exit to top
 put it into numStudents
end repeat
.
.
.
end repeat

[bookmark: _Toc482217614]Testing

[bookmark: _Toc482217615]Test data

The purpose of test data is to determine whether or not the program is fit for purpose

For example: 	to test input validation code for data in the range 30 to 60 inclusive

test data: 	normal values 45, 33, 57, … 	// these should be accepted – in range
			extreme values 30 and 60	//these should be accepted- in range
			exceptional values 29, 61, -0.008, “AAA” //these should be rejected – out of range

A test table is made to show the test results. For example, test data for validating integer data in the range 100 to 200 inclusive might look like this:

	Type of test data
	Values used
	Expected results
	Actual results

	Normal
	150, 182, 101
	Value accepted by program
	<<Screenshot showing the result when the program runs>>

	Extreme
	100, 200
	Value accepted by program
	<<Screenshot showing the result when the program runs>>

	Exceptional
(out of range)
	99, 201, -500
	Value not accepted by program
	<<Screenshot showing the result when the program runs>>

	Exceptional
(wrong data type)
	“#banana”, “£”, 0.045
	Value not accepted by program. System error?
	<<Screenshot showing the result when the program runs>>

[bookmark: _Toc482217616]Errors

Syntax errors (e.g. spelling mistake) 	e.g. pat 30 into length

Logic errors (i.e. faulty logic by programmer) 	e.g. put length + breadth into area

Runtime/execution errors (errors that cause the program to fail while it is running)

Examples: a display field doesn’t exist, dividing by zero, a file used by the program doesn’t exist

[bookmark: _Toc482217617]Evaluation

[bookmark: _Toc482217618]Fitness for purpose

Fitness for purpose means that the program meets all of the requirements of the analysis stage. The program would be tested to ensure that it carries out all of the requirements of the analysis stage without failing.

The test table results can be used as evidence for this. For example, you might say:

“My code needed to validate data in the range 100 to 200 and the test table shows that my code works for normal data. In order for the code to work for extreme data, I had to have the condition >= 100 not just >100. I fixed this logic error and my code now works for extreme data. My code does not work well for exceptional data – it rejects 99 and 201 which is correct – but I didn’t know how to have the code reject other types of data such as strings and reals. So my evaluation is that my program is reasonably fit for purpose but not completely”

[bookmark: _Toc482217619]Efficient use of coding constructs

See Efficient Solutions in the Design section

This part of the evaluation would be where you judge whether or not you managed to write efficient code. Efficient code would involve using loops where possible, organising IF statements properly, using pre-defined functions, parameters and so on

For example,

		IF (x >=0) THEN
			IF (y >= 0) THEN
				IF (z >= 0) THEN
					….
				END IF
			END IF
		END IF

would be more efficient written as

		IF (x >= 0) AND (y >= 0) AND (z >= 0) THEN
			…
		END IF

This code is more readable (therefore easier to edit), it is more memory-efficient (fewer lines of code) and more processor-time efficient (processor has less work to do)
					

[bookmark: _Toc482217620]Robustness

A robust program is one that can cope with errors during execution and with unusual input. It doesn’t fail (crash) when running.

For example, if a program needed to access another file to run and that file didn’t exist, a robust program would alert the user to the fact whereas a non-robust program would probably just crash.

If the program needed the printer to be online while it was running, a robust program would cope with the situation if the printer wasn’t connected – maybe alert the user and make suggestions.

Another situation that can make a program crash is trying to divide by zero.

When you are testing your programs, you should try different ways to make them crash to see how robust they actually are. Then you can make evaluative statements such as “it is robust for normal and extreme data but using “£” as exceptional test data made the program crash so my program is not completely robust”.

[bookmark: _Toc482217621]Readability of code

It is very important to make your code readable, in case another programmer (or even yourself!) has to edit your code. Code can be made more readable by using:

· Meaningful variable names
· Internal commentary
· Indentation
· white space

Your evaluation should judge whether or not you have made your program readable and, if so, in what ways and that it meets all the requirements from the analysis stage.

4

image3.png
10

42

16

31

27

18

49

22

25

17

23

image4.png
10

42

16

31

27

18

49

22

25

17

23

image5.png
Encode run
lengihs

Encode un
lengh

unt st byte Count remaining utput byte uput court
Count st byt Output byt Output count

=

Count remaining
bye

image6.gif
e

image7.jpeg
o
=

[wagl
104
ReTwE)
Wiz &g]

STRET SR

©

QUESToNN2—

veo

"‘ (WoioRev) |
|

image8.png
.orem Ipsum Lorem Ipsum

rem Ipsum .orem Ipsum

Butt: Button Button Button !

Lorem ipsum

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Pellentesque hendrerit
massa vel nisi viverra, id consequat
lorem Iacinia. Integer eu sapien nec
magna bibendum pellentesque in quis
lectus. Integer sit amet ante ut orci
varius porta. Vivamus posuere velit
arcu, vitae vehicula metus congue
pretium. In fringilla tortor nec massa
cursus, non pharetra sem dignissim. Ut
quis consequat ligula. Phasellus nibh
elit, rhoncus a matis vel, finibus in ex.
Praesent id venenatis elit. Vivamus non
finibus odio.

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Donec

Lorem ipsum quis ex nibh. Mauris in
condimentum enim. Suspendisse
Lorem ipsum id egestas sem.

image1.png

image2.png

