Higher Computing Science
SDD
Programming – March ‘18

a)	Software Development Process

Stage 1 Analysis

Analysis:-	Studying the problem and coming up with a written description of EXACTLY
what is being asked for by the client.
Involves:-	Interviewing client to extract exact requirements of software/purpose of program
	Producing the requirements specification
		Identifying inputs/processes/outputs
		Identifying the scope, ()
Identifying the boundaries, ()
		Detailing the functional requirements, (What it should be able to do).

Should Include:-	Purpose
			Scope
			Boundaries
			Functional requirements

Purpose:-			A general description of the purpose of the software.

Scope: 			A list of the deliverables that the project will hand over to the client and/or end-
user,
eg design, completed program, test plan, test results and evaluation report.
It can also include any time limits for the project.

Boundaries: 			The limits that help to define what is in the project and what is not. It can also
clarify any assumptions made by the software developers regarding the client’s requirements.

Functional requirements: 	The features and functions that must be delivered by the system in terms of
inputs, processes and outputs.

Client:-	Person or company who wants a program written to perform tasks within their own
company.

Software company:-	The company paid to produce the software to do the tasks set by the
client.

Program Specification:-	This states SPECIFICALLY what the client and software company
have agreed to provide/pay for. This will form part of a LEGALLY BINDING CONTRACT.

Iterative:-	Ongoing.
		Must return to previous stages of development process in light of new information
		i.e.	Analysis, Design, implementation, Testing

Stage 2	Design

Design:-	Plan

PseudoCode:-		Numbered list of instructions written in English type statements.
			Half way house between analysis, (sentences written in English) and code.
			Must include:-		Top Level Design
						Data Flow
						Refinements

Stepwise Refinement:-	Used in Structured diagrams & Pseudocode.
				AKA Top-down design
				A problem is broken down into smaller parts.
				These smaller parts can be broken down further into even small parts.
				Tiny parts should be easy to solve.

Bottom-up Design:-		Designer looks at all the small parts already solved.
				Builds new solution from bits of older solutions.
				Parts will need to be adapted to new solution.

In reality – solutions are a mixture of top-down and bottom-up design.

Structured Diagrams:-	Can also be used to plan a program.
				e.g.	Example below also shows data flow

[image:]

				Refinements can be shown separately from the top level design.
				e.g.

[image:]

Wire Framing:-	This is a diagram to represent the user interface, can be used for web sites and databases also.
	Considerations:-	Navigational Structure
				Presentation of data
				Interface design

	User Considerations:-	Users with Visual Impairments
					Users with Hearing Impairments
					Users with Motor & Dexterity Impairments

Agile Methodologies:-	A group of software development methods.
				Iterative & incremental development.
				Continually collaboration between teams to “evolve” a solution.
				
				• Essential that client is fully involved.
				• Programmers divided into teams with small targets achievable by
the end of the day.
				• Games are developed this way.
				• Programs evolve and can change along the way.
				• Provides regular opportunities to assess development/success.
				• Shorter iterations of work = quicker response to change.
				• Gather requirements at the same time as developing software.

e.g.

RAD:-	Rapid Application Development
	Aka Joint Application Development
	Requires continual input from client and developers
	Uses minimal planning
	Requires event driven languages
	Iterative process

[image:]

	Advantages:-		• Projects tend to be finished quickly;
				• Clients feel involved;
				• Time isn’t wasted on creating unwanted parts;
				• Prototypes can stimulate interest in the software.

	Disadvantages		• Software can be patchy as it represents a series of ad-hoc
					solutions.
						• Can be difficult to debug.

Differences between Waterfall, (aka iterative) and Agile Methodologies

	
	Iterative
	Agile

	Client Interaction
	The client is heavily involved in the initial analysis stage and at the end of development, when evaluating if the software meets their needs and matches the agreed specification.

	The client is involved throughout the process, giving constant feedback on prototypes of the software during development. This feedback is acted upon, quickly ensuring the software evolves throughout the project. Changing goals during the development can be positive in terms of final client satisfaction with the product.

	Teamwork
	Teams of analysts, programmers, testers and documenters work independently on each phase of development. Teams mainly work in isolation with some communication required between each phase.

	Teams of developers communicate and collaborate, rather than teams of experts operating in isolation.
During a project, fast, face-to-face communication between individuals with different skills is an important factor in progressing the project quickly.

	Documentation
	A detailed project specification is created at the beginning of a project. Significant time is spent during the project on design, program commentary and test plans.

	While modelling solutions remains important, creating large documents that are never updated or referred to again upon completion of the project are not.
Agile focuses on reducing documentation. It spends time on small cycles of coding, testing and adapting to change.
Any documentation produced (for example internal commentary in code) should focus purely on progressing the project.

	Measure of Progress
	Follows a strict plan, with progress measured against timescales set at the beginning of the project.

	Breaks a project down into a series of short development goals (often called “sprints”). This involves cross-functional teams working on: planning, analysis, design, coding, unit testing, and acceptance testing.
Progress is measured by the time it takes to produce prototypes or working components of the software.
Agile focuses on delivering software as quickly as possible.

	Adaptive Vs Predictive
	A predictive methodology, focusing on analysing and planning the future in detail and catering for known risks.
Predictive methods rely on effective early phase analysis and if this goes very wrong, the project may have difficulty changing direction.
Predictive teams often institute a change control board to ensure they consider only the most valuable changes.
	An adaptive methodology, focusing on adapting quickly to changing realities. When the needs of a project change, an adaptive team changes as well.
An adaptive team has difficulty describing exactly what they will do next week but could report on which features they plan for next month.
The further away a date is, the vaguer an adaptive method is about what will happen on that date.

	Testing
	Testing is carried out when the implementation phase of the project is complete.

	There is no recognised testing phase, as testing is carried out in conjunction with programming.

Stage 3 Implementation

Implementation:-		The creation of a program, (code).

Program needs to be:-		• Fit For Purpose -	Meets the specification.
				• Maintainable -	Later changes can be done easily and quickly.
				• Reliable -		Free from bugs.
				• Readable -		Can be easily understood by other people.
				• Portable -		Can be adapted to run on different types
computers.
				• Efficient -		Does not require excess processor time & memory
							disproportional to the scale of the program.

Language Choice:-	Depends on:-			• Type of problem;
							• Hardware & Software compatibility;
							• Data types available;
							• Features and constructs available;

Stage 4 Testing

“Testing can only convince us of the presence of
errors, and not of their absence”

Testing Types:-	Normal -		Testing using expected inputs.
			Extreme -		Testing using boundaries of expected inputs.
			Exceptional		Testing using unexpected inputs.

			E.G.	Enter a number between 1 and 10

			Normal:-		7
			Extreme:-		1 & 10
			Exceptional:-	1000000000, or “banana”

Test Plan:-		Testing should follow a plan.
			Should include:-	• Part of program being tested;
						• The expected output from the test;
						• Should include normal, extreme & exceptional test
data.

Acceptance Testing:-	 Client should be involved in acceptance testing as:-
					• Software can be tested on clients systems;
					• Software can be tested on eventual users;
					• Can provide feedback to software development company;
					• Client needs to agree that software meets their needs before
accepting/paying for it.

Usability Testing:-	Set of users given the same series of tasks to perform.
			Tasks should encompass all functional requirements of software.
			Should have combination of novice and expert users.
			Allows developers to make changes based on feedback

Beta Testing:-	Last stage of testing prior to release.
“Trusted” users test first draft of program.
			Tested under “normal” conditions for the program.
			Allows developers to make changes based on feedback before general
release.

Error Types:-		Syntax
			Execution, (Run-Time)
			Logical

Syntax Error:-	Mistakes in the “grammar” of the programming language,
e.g. typing errors.
			Reported by the translator, (interpreter or compiler).

Execution Error:-	Not detected by translator.
			Detected when program is run.
			Causes program to crash
				e.g.	dividing by 0
					reading a file when file cannot be found
			Good software should have error-tapping techniques to avoid these errors.

Logical Error:-	Mistakes in the actual way the solution has been thought out.
			Not detected by translator.
			No error is reported.
			However, wrong results produced.
				e.g.	adding two numbers instead of dividing them.

Dry Runs:-	Requires test data & a listing of the program code being tested.
		Developer calculates EXACTLY what happens as the data passes through the part
of the program.
Pencil & paper exercise.
Trace Table can be used to identify variables and data expected to be held.

Trace Table:-		Used to test algorithms, (code).
			Used to test for LOGICAL errors.
			Shows each variable and the subsequent values as they pass through the
algorithm.
Can be used with a dry run.

Advantages:-	• You can see what the code will do before executed;
			• Helps spot errors in coding.

Breakpoints:-		An intentional stopping or pausing place in a program for debugging
purposes.
Used to identify the point at which errors occur.
e.g.	Stop program at line 458

Watchpoints:-	A conditional breakpoint. A breakpoint for data rather than code.
			Stops the program when a particular variable(s)’ data matches certain criteria.
			e.g.	Stop program if variable score < 0

Stage 5 Documentation

Documentation -	“Paperwork” which accompanies the product.
			Now provided digitally.

i.e.

User Guide:-	Describes to the eventual user how to operate the program.
			Ideally would include tutorials.

Technical Guide:-		Describes to the user how to install the program on their system.
				Should include a trouble shooting section.

Stage 6 Evaluation

Evaluation:-	Working out whether the program is “good” or not.

Questions to ask when evaluating:-	Is the program FIT FOR PURPOSE?
					Is the program using EFFICIENT CODING CONSTRUCTS?
					Is the program USABLE?
					Is the program MAINTAINABLE?
					Is the program ROBUST?

Fit for purpose:- 	This reflects whether the software carries out all the tasks required of the software
specification.
Your evaluation should identify any discrepancies between the software specification and the completed software.

Efficient coding constructs:-	An efficient program should not waste memory or processing time on
unnecessary tasks or repetitions.
	This reflects whether the software writers have used their knowledge of
constructs to help them create efficient code. For example using:
 suitable data types or structures
 conditional or fixed loops
 arrays
 nested selection
 procedures or functions with parameter passing

Your evaluation should identify where your coding has been efficient.

Usability:- 	This reflects how intuitive the software is from a user’s perspective and should include:
 the general user interface
 the user prompts
 the screen layout
 any help screens

Your evaluation should identify features of the software that have enhanced usability for the user.

Maintainability:-	This reflects how easy it is to alter the software. The factors affecting maintainability
include:
 readability of the code — made easier by using meaningful variable names,
comments, indentation and whitespace
 amount of modularity — using functions and procedures effectively

Your evaluation should identify how your code helps with the maintainability of the software.

Robustness:- 	This reflects how well the software copes with errors during execution including:
 exceptional data, eg the computer crashing if “out of range”
 incorrect data entered

Your evaluation should reflect the testing that has been undertaken to meet the specification, as well as to demonstrate some degree of robustness.

Evaluation Report:-	Should be carried out by the developer and given to the client.
				This explains the evaluation in terms of:-

					• Fitness for purpose;
					• User Interface;
					• Readability;
					• Robustness;
					• Reliability;
					• Portability;
					• Efficiency;
					• Maintainability.

Stage 7 Maintenance

Maintenance:-	Changing to correct mistakes or to improve/change.

3 types of maintenance:-		• Corrective;
					• Perfective;
					• Adaptive.

Corrective:-	Fixing bugs that appear once the program is in use.
			Cost is responsibility of programming team.

Perfective:-	Adding new features
		Altering due to issues raised during evaluation
		Re-released as new version.
		Cost is usually met by client.

Adaptive:-	Changed due to new conditions e.g. New hardware/software
		Cost usually met by the client.

b)	Coding Theory

Data Types:-		Real		-	Stores decimal numbers
			Integer			Stores whole numbers
			Character		Stores a single letter or symbol
			String			Stores list of characters e.g. a word
			Date			Stores a valid date
			Boolean		Stores one of two possible values, e.g. True or False
			Sample			Audio or Video clip
			Array			a set of data items of the same data type.
			Record			multiple arrays which can be accessed using the same index.
			Parallel 1D Arrays	This is when a collection of arrays are used together to represent a
single array of records, (but it is not records!!!)
Each array should have the same number of data items.
e.g.	3 separate arrays	forename	surname	class
these 3 arrays can be used together to display information about 1 pupil

	forename[3] & Surname[3] & class[3]

			Array of Records	This is simply more than 1 record stored as a single entity.
						The array stores many records, each record storing many data
Items
						e.g.	ExamDates can be records storing 4 fields per exam
								– subject, day, month & year
						e.g.	Pseudocode for creation of Examdates Records:-

						• Set up the record structure:-

							RECORD examdata TO {subject, day, month, year}

						• Setup up number of records:-

							SET examdates[4] AS examdata	creates an array of
												5 records, 0,1,2,3,4

						• Place data in records

							SET examdates[1] TO examdata (“Computing”, 08,05,17)
							SET examdates[2] TO examdata (“Art, 09,05,17)

Array Advantages:-	• Only one line of code required to create multiple values;
				• Can be traversed using loop structure
				• Parameter passing easily implemented with one line of code;
				• Code is very efficient;
				• Each individual element of the array can be referenced by indexing.

	Disdavantages:-	• Can only store 1 data type.

Variables:-		This is how data is stored in memory by a program
			Each variable should have a name and a data type.

Local Variable:-	Only used within the sub-program it is declared in.
			Advantages:-	• Allows variables with same name to be used in different procedures
					• Aids modularity.
					• Saves memory as when the subprogram is complete the area in memory
used by the local variable is freed up.

Global Variable:-	Can be used throughout the entire program passing from one sub-program to
the next.
Inefficient as it needs to be held in memory for the duration of the whole program.

Variable Scope:-	The area of code in which a variable is usable.
			e.g.	• a local variable’s scope is only the sub-program it is declared in.
				• A formal parameter which is usable within that procedure/module.

Control Structures:-	These are methods which allow the program to perform basic
operations.

i.e.	Sequence
	Selection
	Repetition

Sequence:-	This basically means that one instruction follows another.
		The computer carries out one command at a time in the order the developer states.

Selection:-	This allows the program to make a decision.
		e.g.	IF statements
			CASE/SWITCH statements

Repetition:-	This allows the program to carry out the same commands over and over again
without having to type up the commands in the program over and over again.
These are called LOOPS.

Fixed Loop:-	This is when we know in advance the number of times we need to loop.
			e.g.	Loop 10 times

Conditional Loop:-	This is when we don’t know how many times we need to loop, it
depends on something happening or not, a condition.
e.g.	Loop UNTIL number1 > 100
	Repeat WHILE number1 >1000

Complex Condition:-	Contains multiple conditions which have to be met.
				Can be used in Selection (IF’s and conditional loops)
				e.g.	age >17 AND age < 100

Concatenation:-	Joining two or more strings.
			e.g.	Forename = John		Surname = Smith
				put forename into fullname
				put “ “ after fullname
				put surname after fullname
				fullname = John Smith

Procedure:-	A sub-section of code.
		Usually designed to perform a particular task.

Function:-	A piece of code, written by the programmer, which returns a single value

Pre-Defined Function:-	A piece of code, built into the software language, which returns a single value.
					e.g.	length, round, random
						creating substrings
						convert character to ASCII
						convert ASCII to character
						modulus
						convert floating-point numbers to integers (INT & ROUND)

• Substrings:-	A character or a group of characters being removed from a string.
			e.g.	put ‘abcde” into alphabet
				put char 1 to 3 into line 5 of field “output”
					abc would be displayed in screen

• Convert Characters to ASCII:-	This pre-defined function returns a character into its equivalent ASCII
numeric value
e.g.	A	=	65
	a	=	97
• Convert ASCII to Characters:-	This pre-defined function returns an ASCII numeric value into it’s
equivalent character
e.g.	65	=	A
	97	=	a

• Modulus:-	This pre-defined function returns the integer remainder from a division
		e.g.	15 divided by 2 equals 7 remainder 1
			the modulus is 1

• Converting floating point to integers:-	This pre-defined function returns an integer value when given a
decimal value.
This is done by removing the decimal digits, NOT ROUNDING.
e.g.	decimal = 99.99 		integer	=	99

Formatting of I/O:-	A developer has to take into account the format of data being read
into the program, (INPUT), and data being outputted/displayed, (OUTPUT).

Modularity:-	Splitting the program into sub-programs, (sub-routines).
			These sub-programs can be worked on by different teams.
			They can be called upon many times within a program.
			Types:-	Procedures
					User-defined Functions, (created by developer, only returns a
single value).
					Pre-defined Functions, (built into programming language, only
returns a single value e.g. random, length etc.).

Data Flow

Data Flow:-	The movement of data between sub-routines.

Parameter Passing:-	the name given to the process of transferring, (passing), data,
(Parameters/variables), from one program/sub-program to another.

Advantages

• Data flow is clearer so program is more readable and easier to maintain.
• Portability is improved as code can be reused without altering variable names.
• Aids modularity.
• Reduces clashes between variable names.
• Reduces impact or load on main memory.

Formal Parameters:-	parameters used in the sub-routine definition

Actual Parameters:-		parameters passed into the routine when called from another sub-
routine.

Passing Data by Value:-	This allows a variable to be passed into a sub-routine, but not passed
back out again, (IN).
The sub-routine is given a value, the original value is not affected!!!
Can be more demanding when using arrays because:-
• a copy of the data has to be created.
• copy takes up RAM space.
• increases number of instructions required.

Passing data by Reference:-	This allows a variable to be passed into a sub-routine, updated,
and passed back out again, (IN/OUT).
Arrays are always passed by reference.
The sub-routine is given the address of the original variable, it can be changed/updated.

Sequential Files:-		These can be used as input for a program or output from a program.
				READ		-	Input data
				WRITE	-	Output data
				CREATE
				CLOSE
				OPEN

Standard Algorithms

Standard Algorithms:-	A piece of code which is used on a regular basis in most programs.
				These are usually stored as templates and can be adapted to suit the
current program’s specifications.
				i.e	Input Validation;	(NAT 5)
					Linear Search.
					Counting Occurences;
	Finding Minimum;
					Finding Maximium;

				You need to be able to describe and give examples of these
standard algorithms in pseudocode & code.

Therefore:-

Memorise the pseudocode & code for these!!!!!!!!!!

It’s a common exam question.

Input Validation		NAT 5

Pseudocode

1	RECEIVE mark FROM KEYBOARD
2	REPEAT UNTIL mark is between 0 & 30
3		SEND error message to DISPLAY & RECEIVE mark FROM KEYBOARD
4	END REPEAT
5	RETURN mark

Algorithm in LiveCode

1	Function input_validation
2		Ask "Please enter a whole mark for the exam between 0 and 30: " 
3		Put it into mark
4		Repeat until mark >= 0 and mark <= 30
5			Ask "Invalid mark, please enter a whole number between 0 and 30: " 
6			IF the result = "Cancel" THEN exit to top
7				Put it into mark
8			End Repeat
9		Return mark
10	End input_validation

Explanation of Working

• Mark typed in by user
• Conditional loop started – will not come out of loop until mark is between 0 & 30
• Error message displayed and user asked to reenter mark.
• Continues until valid mark entered
• Valid mark returned

Linear Search

Pseudocode

1	RECEIVE StudentID FROM KEYBOARD
2	SET counter TO 1
3	SET found to false
4	REPEAT until found = true OR counter = 20
5		IF arrayID[counter] equals StudentID THEN
6			SET found to true
7		END IF
8		SET counter to counter + 1
9	END REPEAT

Algorithim in LiveCode

1	Function linear_search
2		Ask "Please enter the ID of the student: "
3		Put it into StudentID
4		put 1 into counter
5		put false into found
6		Repeat UNTIL found = true OR counter = 20
7			IF arrayID[counter] = StudentID THEN
8				Put true into found
9			END IF
10			put counter + 1 into counter
11		End Repeat
12	End linear_search

Explanation of Working

• Search data asked for – entered by user
• Counter set to 1 to set up variable to keep track of how many students have been checked.
• Boolean variable set to false
• Each student is checked in the array
• Loop stops if ID is found or counter gets to 20 (all students checked).

Counting Occurances

Pseudocode

1	SET PassedExam to 0
2	REPEAT 20 times
3		RECEIVE arraymark[loop] FROM KEYBOARD
4		IF arraymark[loop] >50 THEN
5			Add 1 to running total (PassedExam)
6		END IF
7	END REPEAT

Algorithm in LiveCode

1	Function counting_occurances
		put 0 into PassedExam
2		Repeat with loop = 1 to 20
3			Ask "Please enter the Computing mark of student number: " & loop
 4			Put it into arrayMark[loop]
5			IF arrayMark[loop] > 50 THEN
6				Add 1 to PassedExam
7			END IF
8		End Repeat
9		Return PassedExam
10	End counting_occurances

Explanation of working

• The counter, (i.e. PassedExam), is initialised to zero.
• For each pupil (20) their mark is entered
• IF their mark is above 50, 1 is added to the counter
• Once all pupils have been entered, the counter records the number of pupils who have passed.
• Function passes out this number (those who have passed).

Finding Maximunm

Pseudocode

1	SET maximum to arraymark[1]
2	REPEAT 19 times
3		IF arraymark[loop] > maximum THEN
4			SET maximum to arraymark[loop]
5			SET position to loop
6		END IF
7	END REPEAT
8	RETURN position

1	Function finding_maximum
 2		Put arrayMark[1] into Maximum
3		Repeat with loop = 2 to 20
4			IF arrayMark[loop] > Maximum THEN
5				Put arrayMark[loop] into Maximum
6				Put loop into Position_of_Max
7			END IF
8		End Repeat
9		Return Position_of_Max
10	End finding_maximum

Explanation of Working

• Set the firstmark to be the biggest mark
• Start repeat loop to check all other marks
• If current mark is greater than the current maximum, change the maximum to new mark
• Record position of new maximum in the array
• Return the position of the maximum value in the array

Finding Minimum

Pseudocode

1	SET minimum to arraymark[1]
2	REPEAT 19 times
3		IF arraymark[loop] < minimum THEN
4			SET minimum to arraymark[loop]
5			SET position to loop
6		END IF
7	END REPEAT
8	RETURN position

Algorithim in LiveCode

1	Function finding_minimum
2		Put arrayMark[1] into Minimum
3		Repeat with loop = 2 to 20
4			IF arrayMark[loop] < Minimum THEN
5				Put arrayMark[loop] into Minimum
6				Put loop into Position_of_Min
7			END IF
8		End Repeat
9		Return Position_of_Min
10	End finding_minimum

Explanation of Working

• Set the firstmark to be the smallest mark
• Start repeat loop to check all other marks
• If current mark is less than the current minimum, change the minimum to new mark
• Record position of new minimum in the array
• Return the position of the minimum value in the array

c)	Types of Programming Languages

Procedural High Level Language

High Level:-	• Commands are similar to English.
		• Easy to program in comparison with Low Level Languages.
		• Portable.
		NB	Most languages used are High Level Languages. E,g, LiveCode, HTML
[bookmark: _GoBack]
Procedural/Imperative:-		Use command and keywords;
					Solution is an algorithm;
					Split into separate “chunks”,
aka	procedures; routines; sub-routines; methods, etc.
					Typical Features:-	Data Types
								Operations, (+, -, *, /, AND, OR, NOT)
								Sequencing
								Looping
								Procedures/subroutines
								Parameter passing

					e.g.	BASIC		PASCAL
						C++			FORTRAN
						LiveCode

23

image1.tiff
Problem - Who has the top
percentage in the
computing class

Display pupil name
and percentage in
top poistion

Calculate Find position of pupil

Get results percentages with top percentage

reflim mark
n::ﬂ m': :oum i Percentsgs Percentage top poettion top posttion
praim m

course mark

image2.tiff
Open marks file

Get Results

start fixed loop for
each pupil

Close marks file

Get pupil name

Get prelim mark

get course mark

calculate
percentages

start fixed loop
for each pupil

(prelim mark

+ course
mark) divided
by 1.5

Find position of
pupil with top
percentage

start fixed loop
from second pupil

top position equals
first position

Is next
percentage greater
than current top
percentage

set position as
new top position

image3.jpeg
Demonstrate

Analysis And

Quick Design Implementation

Build —';efine

Prototype Circles

