
 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 1

Programming
with

Materials produced at GHS
By Mr S. whyte

Higher Computing Science

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 2

 The Software Development Process
 Introduction

 Analysis

 Design

 Implementation

 Testing

 Documentation

 Evaluation

 Maintenance

The Software Development Process (SDP) can be split into 7 main steps which are carried out in order.
These steps should be carried out when creating any programming project and are summarised below.

A statement about what your program is going to do. The analysis stage will also cover areas of
feasibility, i.e. is there enough time and money available to complete the project?

This involves designing both the user interface and the structure of the program code.

For the purpose of Higher Computing, more emphasis will be placed on designing the structure of the
program code rather than the design of the user interface. We will be using a design notation known as
pseudocode to achieve this. More is mentioned about pseudocode on the next page.

The implementation stage involves keying in the program code using the built in text editor within the
programming environment. We will use LiveCode to create our programs.

Testing is an important part of any project. Testing ensures that your program is reliable and robust in
the sense that it should produce the correct results and not crash due to unexpected input.

We should test our program with three sets of test data. These are:
• Normal (accepted data within a set range)
• Extreme (accepted data on the boundaries)
• Exceptional (data that is not accepted).

An evaluation is usually a review which shows that your program is fit for purpose, in other words, it
does exactly what it was designed to do.

The evaluation should also focus on the readability of your program code. For example, if another
programmer was asked to maintain your program code at a later date, would they be able to understand
what was going on? You should always ensure your program is readable by doing the following:

• Use of meaningful identifiers for variable and array names
• Use of internal commentary (// This subroutine will do the following....)
• Effective use of white space between subroutines to space out the program.
• Indentation to show the start and end of any control structures such as a fixed loop.
• Parameter passing to show the programmer what variables and arrays are being passed in and

out of each subroutine and which parameters are being changed.

Documentation is usually produced in the form of a user guide and a technical guide. The user guide
shows the user how to use the functions and features of the software whereas the technical guide
gives the user information on how to install the software as well as the minimum system requirements.

A

Dance

In

The

Dark

Every

Monday
Maintenance is performed at the very end of the project. You will not be required to perform any
maintenance on your programs but you will need to know about Corrective, Adaptive and Perfective
maintenance. These are covered in the Software Development theory notes.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 3

 The Design Process
 Pseudocode and Data Flow

The design of a program is very important as it allows the programmer to think about
the structure of the program before they begin to create it.

The most common way to design the logic of a program is to use a text-based notation
known as Pseudocode. Pseudocode is a cross between programming language and
our own English language. It makes a program easier to understand without relying on
the use of a programs complex commands and syntax.

The design is built up of two parts, the first is the Stepwise design. This shows the main steps of the
program. The second part is the Stepwise Refinement. This involves breaking these main steps into
even smaller steps so eventually, one line of pseudocode becomes one line of program code.

Here is the program pseudocode to calculate the volume of a room using the variables length, breadth,
height and room_volume. Study both the pseudocode and data flow very closely to understand what
is going on:

Stepwise Design (the main steps of the program)

1. Setup the global variables No Data flow required
2. Initialise variables  No Data flow required
3. Get room measurements In/Out: room_length, room_breadth, room_height

4. Calculate Room Volume  In: room_length, room_breadth, room_height In/Out: room_volume

5. Display Room Volume   In: room_volume

Stepwise Refinement (the main steps further refined into smaller steps)

1. Setup variables
1.1 Setup room_length, room_breadth, room_height and room_volume as global variables

2. Initialise variables
2.1 Put 0 into room_length, room_breadth, room_height and room_volume

3. Get room measurements
3.1 Ask the user for the length of the room in metres
3.2 Put it into the variable room_length
3.3 Ask the user for the breadth of the room in metres
3.4 Put it into the variable room_breadth
3.5 Ask the user for the height of the room in metres
3.6 Put it into the variable room_height

4. Calculate room volume
4.1 Put room_length * room_breadth * room_height into room_volume

5. Display room volume
5.1 Put a message telling the user the volume of the room in cubic metres using the variable room_volume

Stepwise Refinement:
The main steps are broken down further
(refined). We use 3.1, 3.2, 3.3, etc.

Notice that the pseudocode looks more like
our own language rather than that of the
programs.

Data flow explanation for step 3: Since room_length, room_breadth and room_height will have been initialised to 0
    in the subroutine initialise, they are coming into this step with the value 0 and will
    be given new values according to the size of the room. Hence they are IN as 0’s
    and then passed as OUT as a new value.

Data flow explanation for step 4: The room_length, room_breadth and room_height variables are passed IN to be
    used in the calculation for room_volume. As a result, they are not changing their
    values so are just passed as IN’s. The room_volume variable would have been
    set to 0 in the initialise subroutine and as a result of the calculation, room_volume
    will be given a new value so it’s IN/OUT.

Data flow explanation for step 5: Only the room_volume is to be displayed and it is not changing in value from
    what was calculated in step 4, so it is just an IN variable within this subroutine.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 4

 What are Variables?

Let’s talk about variables as they are very important in programming.

To put it simply, a variable is like a “box” into which data can be placed
whilst a program is running. We give them names (identifiers) which
suggest or give us a clue as to what data is being held in the variable.

Variables can be store different types of data, for example:

• Text (known as strings), e.g. Steven, Jim, or Lisa etc.
• Real numbers, (numbers with a decimal point) e.g. 3.14, 5.7 or 11.16, etc.
• Integer numbers, (whole numbers) e.g. 5, 7 or 102, etc.
• Two state values (known as boolean), e.g. Yes/No, True/False, 1/0, etc.

Here are the variables you will use in your first program:

global room_length, room_breadth, room_height, room_volume

Variable Rules

Variables cannot contain any spaces and must not be a reserved command in
LiveCode. You can tell if a variable has been accepted as it will appear in black font
when it is typed into the text editor as shown below:

The ampersand separates both the variable and the text to be printed
on the screen. Two ampersands && together will also include a single
space when the text is printed. For example the following code:

....will produce:
“The volume of this room is 3000 cubic metres.”

put "The volume of this room is" &&room_volume&& "cubic metres." into field “output”

 ask "Please enter the length of the room in metres"

 put it into room_length

Some languages allow variables to be Setup at any point in a program. Other
languages like LiveCode require global variables to be declared at the start of the
program before they can be used.

The advantages of declaring variables at the start are as follows:

• It allows the translator program to reserve suitable areas of memory to hold the
data structures which will subsequently be used by the program.

• The declaration of variables serves as good discipline to programmers because
they have to create a list which details the name and purpose of each variable
used in their program.

 Implementation

This is the variable

Your Program

Variables are
identifiers in RAM

used to store data in
a running program.

Name Age Height

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 5

 Classification of Variables
Variables fall into two main types. The type of a variable determines where it can be
used in a program.

The two main types of variable are local variables and global variables. A description
of each is given below. It is important that you understand the difference as you will gain
experience of using both types of variable when you are programming.

A local variable is one which only exists within one subroutine,
function or procedure.

Local variables are created when the subroutine is called (run) and
are then destroyed when the subroutine terminates. They cannot
be accessed or assigned a value except within that subroutine.

The example below shows the use of a local variable:

on get_users_name
 // Setup the local variable to be used in this subroutine
 local key_pressed

 repeat until key_pressed = "Y" or key_pressed = "y"
 ask "Please enter your name"
 put it into the_name_of_person
 ask "Are you happy with the name entered? (Y or y for yes)"
 put it into key_pressed
 end repeat
end get_users_name

In the subroutine get_users_name, the local variable key_pressed is created. The
purpose of this variable is to check whether or not the user is happy with the name that
they have entered by keying in “Y” or “y”, otherwise the program will keep looping. This
local variable is unique to this subroutine and cannot be used in any other subroutine.

The advantage of using local variables is that it prevents them from being used
elsewhere in the program and possibly having their contents accidentally changed.

Global Variables A global variable is one which can be accessed and altered from
any part of the program, even from another script/event so long as
it is declared at the very start.

Global variables should always be used with care as their values
may accidentally change if the programmer forgets that they have
already used them in another subroutine. The example below
shows the setting up of a series of global variables in LiveCode:

// Setup the global variables to be used in this event
global name_of_person, age_of_person, address_of_person

In the code snippet above three global variables have been created. These variables
can be used in any subroutine and in any LiveCode event so long as they are
declared at the start of the event in the same way as shown above.

Local Variables

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 6

 Parameter Passing
What is a Parameter?

A parameter can either be a variable or an array. When a parameter is used, it can be
passed into a sub-routine and not changed (passes by value) or passed into a
subroutine and changed (passed by reference). Only global variables and arrays can
be parameter passed because (as you have already learned), only a parameter that is
global can be used in more than one subroutine.

For Higher Computing, you need to demonstrate both parameter passing by value and
by reference within the programs you create. It is vital you understand how it works.
Parameter passing works in the same way as the data flow you do during the design.

Parameter Passing by Value

Passing a parameter by value is used when a parameter is needed in a subroutine but
its value is not going to change in the subroutine.

The subroutine will be passed a copy of the original parameter, so that the original
parameter remains unchanged.

Parameter Passing by Reference

Passing a parameter by reference is used when a parameter is needed in a subroutine
and its value is going to change in the subroutine when it is passed in.

The subroutine will be passed the original parameter and any changes made in the
subroutine will result in a change to the original value(s) held within the parameter.

on get_age

end get_age

Original IS
changed

Original
passed IN

ORIGINAL
PARAMETER IS

CHANGED

Age
1 year

Age
3 years

on get_age

end get_age
Original NOT

changed

Copy
passed IN ORIGINAL

PARAMETER IS
NOT CHANGED

Age
1 year

Age
1 year

Age
1 year

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 7

 Parameter Passing (an example)
For Higher Computing, you need to demonstrate both of these methods of parameter
passing within all programs you create. Study the program below carefully. This
program calculates the volume of a room and it will be the first program you create. It
includes parameter passing indicated in highlighted sections:

// Here are our global parameters (variables) to be used in this event.
global room_length, room_breadth, room_height, room_volume

on mouseUp
// After the names of each subroutine, we include all the global parameters used
// within that subroutine separated by a comma.
 initialise
 get_room_measurements room_length, room_breadth, room_height
 calculate_room_volume room_length, room_breadth, room_height, room_volume
 display_room_volume room_volume
end mouseUp

on initialise
// The first subroutine does not normally include any parameter passing as this
// involves setting up the parameters to null or 0.
 put 0 into room_length
 put 0 into room_breadth
 put 0 into room_height
 put 0 into room_volume
end initialise

// After the subroutine name below, you will notice that the parameter names have
// an @ symbol before their name. This indicates that the parameters are being
// passed into this subroutine by reference, in other words, they are changing from 0
// (initialised state) to whatever the user enters.
on get_room_measurements @room_length, @room_breadth, @room_height
 ask "Please enter the length of the room in metres"
 put it into room_length
 ask "Please enter the breadth of the room in metres"
 put it into room_breadth
 ask "Please enter the height of the room in metres"
 put it into room_height
end get_room_measurements

// After the subroutine name below you will notice that the most of the parameters
// are now being passed by value (no @ sign before the name). This is because the
// values have already been assigned in the previous subroutine and we do not want
// them to change when passed into this subroutine.
//
// The only value which is passed by reference is room_volume as it will be changed
// from its initialised state of 0 to the result of the calculation below.
on calculate_room_volume room_length, room_breadth, room_height, @room_volume
 put (room_length * room_breadth * room_height) into room_volume
end calculate_room_volume

// The only parameter which passed into this subroutine is room_volume. This is
// passed by value as it is the result of the calculation in the previous subroutine and
// we do not want the parameters value to change.
on display_room_volume room_volume
 put "The volume of this room is" &&room_volume&& "cubic metres." into field “output”
end display_room_volume

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 8

 LiveCode
LiveCode is a modern programming environment that has been created by an
Edinburgh-based company called Runtime Revolution, www.runrev.com.

LiveCode is advertised as being a very high level language and is considered to be
even closer to the way we speak and write as opposed to the sometimes complex
commands and syntax used in other high-level programming environments.

Users can use LiveCode to create any type of program. This could range from a
simple application which performs addition to a more advanced game application that
could be run on a desktop computer or mobile phone.

LiveCode is an event-driven programming language which means that it involves
the triggering of events such as a mouse click on a button or text entry into an output
field.

The LiveCode programming environment can run on a variety of operating system
platforms. This includes a PC running Windows XP, Vista, Windows 7 or Linux as well
as on a Mac running OS X.

At least 400MB of hard disk space and 256MB of RAM is required in order for the
programming language to run.

The LiveCode programming environment has already been installed in the
Applications folder:

You will need to access to Glow in order to allow you to download the template stacks
for each of the LiveCode Programming Tasks. You teacher will show you how to do
this.

You should save each program you complete into
your own folder as you may find that you need
part of a program again to help you with your final
assessment.

IMPORTANT

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 9

 Task 1: Volume of a Room

Specification

A program is required to calculate the volume of a room.
The user will be asked for the length, breadth and height of
the room in metres and then once calculated, the program
will display the volume of the room in cubic metres.

Design: Pseudocode for “Calculate Room Volume” Button

Stepwise Design (the main steps of the program with data flow)

1. Setup the global variables
2. Initialise variables 
3. Get room measurements In/Out: room_length, room, breadth, room_height
4. Calculate room volume In: room_length, room_breadth, room_height In/Out: room_volume
5. Display room volume In: room_volume

Stepwise Refinement (the main steps further refined into smaller steps)

1. Setup the global variables
1.1 Setup room_length, room_breadth, room_height and room_volume as global
 variables

2. Initialise variables
2.1 Put 0 into room_length, room_breadth, room_height and room_volume

3. Get room measurements
3.1 Ask the user for the length of the room in metres
3.2 Put it into the variable room_length
3.3 Ask the user for the breadth of the room in metres
3.4 Put it into the variable room_breadth
3.5 Ask the user for the height of the room in metres
3.6 Put it into the variable room_height

4. Calculate room volume
4.1 Put the room_length * room_breadth * room_height into the variable room_volume

5. Display room volume
5.1 Put a message telling the user the volume in cubic metres using the variable
 room_volume in the field “output”

Implementation

After reading through the above design carefully, you are now ready to begin producing
your program code.

Key the code in over the page carefully and correct any coding errors that you make.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 10

 Task 1: Volume of a Room

Implementation (continued)

Open the “Volume of a Room” stack. It can be found on Glow:

LiveCode Programming Tasks > 1_Volume of a Room.livecode

Enter the script below carefully into the Calculate Volume button.
Check that the program works correctly by keying in some test data.
See if the same result is produced if you key in the same numbers
using a calculator.

// Setup the global variables to be used in this event
global room_length, room_breadth, room_height, room_volume

on mouseUp
 initialise
 get_room_measurements room_length, room_breadth, room_height
 calculate_room_volume room_length, room_breadth, room_height, room_volume
 display_room_volume room_volume
end mouseUp

on initialise
 // Initialise the global variables to 0
 put 0 into room_length
 put 0 into room_breadth
 put 0 into room_height
 put 0 into room_volume
end initialise

on get_room_measurements @room_length, @room_breadth, @room_height
 // Get the room measurements from the user
 ask "Please enter the length of the room in metres"
 put it into room_length
 ask "Please enter the breadth of the room in metres"
 put it into room_breadth
 ask "Please enter the height of the room in metres"
 put it into room_height
end get_room_measurements

on calculate_room_volume room_length, room_breadth, room_height, @room_volume
 // Calculate the volume of the room
 put (room_length * room_breadth * room_height) into room_volume
end calculate_room_volume

on display_room_volume room_volume
 // Display the volume of the room using the result within the room_volume variable
 put "The total volume of this room is" &&room_volume&& "cubic metres." into field "output"
end display_room_volume

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 11

 So, what have we learned so far?
The LiveCode program area has three areas:
1. The variable list - lists all variables used in the program
2. The event list - this is a list of all subroutines which are run
 when the event is triggered by the user.
3. The subroutines - contain the lines of code to be executed.

PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE

ASK is a command that allows the programmer to ask the user a question or
ask the user for a response. For example:

ask "Please enter the length of the room in metres"

PUT is a command that allows the programmer to transfer the users response
(it) into a meaningful variable. For example:

put it into room_length

//are used to put internal commentary into a program or to space out
different parts of the program to make it easier to read. For example:

// Display the volume of the room room

on and end are used to start and end of a subroutine. A subroutine must be
started and ended, for example:

on display_room_volume room_volume
 put "The room volume is" &&room_volume into field “output”
end display_room_volume

Fixed
LOOP

One way to get one or more lines of code to repeat is by using a loop. The two
main types of loop are a fixed loop and a conditional loop.

A REPEAT WITH loop can be used to repeat a piece of code as many times as
the user sets it up for. In the example below, the loop is fixed at repeating the
message “Hello World!” 4 times only.

 repeat with loop = 1 to 4
 put "Hello Word!"
 end repeat

A REPEAT UNTIL loop can be used to repeat a line of code until a certain
condition is met. In the example below, the loop will not finish until the user
enters a valid number between 0 and 100. This is the condition.

 ask "Please enter a number between 0 and 100.”
 put it into number
 repeat until number >= 0 and number <= 100
 ask "Invalid number. Please re-enter a number between 0 and 100."
 put it into number
 end repeat

Conditional

LOOP

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 12

 Task 2: Music Shop Takings

Specification

A program is required take in the number of CD’s, DVD’s and Blu-Ray
Disks sold over the course of a day. The program will then find the
combined total takings of CD’s (£7.99), DVD’s (£10.99) and Blu-Ray Disks
(£14.99) sold and display this in an output field.

Design: Pseudocode for “Go” Button

Stepwise Design (the main steps of the program)
1. Setup the global variables
2. Initialise variables 
3. Get Number of Items Sold In/Out: cds_sold, dvds_sold, blurays_sold
4. Calculate Total Takings  In: cds_sold, dvds_sold, blurays_sold In/Out: total_takings
5. Display Total Takings  Out: cds_sold, dvds_sold, blurays_sold, total_takings

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup the global variables
1.1 Setup cds_sold, dvds_sold, blurays_sold and total_takings as global variables

2. Initialise variables
2.1 Put 0 into cds_sold, dvds_sold, blurays_sold and total_takings

3. Get Number of Items Sold
3.1 Ask the user for the number of CD’s sold
3.2 Put it into the variable cds_sold
3.3 Ask the user for the number of DVD’s sold
3.4 Put it into the variable dvds_sold
3.5 Ask the user for the number of Blu-Ray’s sold
3.6 Put it into the variable blurays_sold

4. Calculate Total Takings
4.1 Put cds_sold * 7.99 + dvds_sold * 10.99 + blurays_sold * 14.99 into the variable total_takings

5. Display Total Takings
5.1 Set the number format to pounds and pence (00.00)
5.2 Put a message showing user the number of CD’s sold using the variable cds_sold in line 1
 of the field “output1”
5.3 Put a message showing user the number of DVD’s sold using the variable dvds_sold in line
 2 of the field “output1”
5.4 Put a message showing user the number of Blu-Ray’s sold using the variable blurays_sold
 in line 3 of the field “output1”
5.5 Put a message to the user showing them the total profit for that day using the variable
 total_takings in field “output2”

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 13

 Task 2: Music Shop Takings
Implementation

Open the “Music Shop Takings” stack. It can be found on Glow:

LiveCode Programming Tasks > 2_Music Shop Takings.livecode

Copy the script below carefully into the “Go” button. Check that the
program works correctly by keying in some test data. See if the same
result is produced if you key in the same numbers using a calculator.

// Setup the global variables to be used in this event
global cds_sold, dvds_sold, blurays_sold, total_takings

on mouseUp
 initialise
 get_number_of_items_sold cds_sold, dvds_sold, blurays_sold
 calculate_total_takings cds_sold, dvds_sold, blurays_sold, total_takings
 display_total_takings cds_sold, dvds_sold, blurays_sold, total_takings
end mouseUp

on initialise
 // Initialise the variables
 put 0 into cds_sold
 put 0 into dvds_sold
 put 0 into blurays_sold
 put 0 into total_takings
end initialise

on get_number_of_items_sold @cds_sold, @dvds_sold, @blurays_sold
 // Get the number of CDs, DVDs and Blu-Ray Disks sold
 ask "Please enter the number of CD's sold today: "
 put it into cds_sold
 ask "Please enter the number of DVD's sold today: "
 put it into dvds_sold
 ask "Please enter the number of Blu-Ray's sold today: "
 put it into blurays_sold
end get_number_of_items_sold

on calculate_total_takings cds_sold, dvds_sold, blurays_sold, @total_takings
 // Calculate the total takings by taking the amount of items sold by the user
 put cds_sold * 7.99 + dvds_sold * 10.99 + blurays_sold * 14.99 into total_takings
end calculate_total_takings

on display_total_takings cds_sold, dvds_sold, blurays_sold, total_takings
 // Display the quantity of each type of produce sold during the day
 put cds_sold into line 1 of field "output1"
 put dvds_sold into line 2 of field "output1"
 put blurays_sold into line 3 of field "output1"

 // This function sets the output of the total takings to two decimal places
 set numberformat to "00.00"

 // Display the total cost
 put "Today you have made a total of £" & total_takings into field "output2"
end display_total_takings

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 14

 Task 3: Three Additions
Specification

A program is required to test basic addition. The program will
ask the user for their name, check to see if it’s acceptable, then
ask the user to answer three simple additions of two numbers
(between 0 and 9). The answer will then be checked by the
program and a comment about the answer will be displayed.

The number correct out of three along with a comment should be displayed in the output field.

Design: Pseudocode for “Plus” graphic

Stepwise Design (the main steps of the program with data flow)
1. Setup the Global Variables
2. Initialise variables
3. Get the Users Name In/Out: name_of_person
4. Three Additions In/Out: first_number, second_number, my_answer Out: name_of_person

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup the Global Variables
1.1 Setup name_of_person, first_number, second_number, my_answer as global variables

2. Initialise variables
2.1 Put 0 into first_number, second_number and my_answer
2.2 Put “” into name_of_person

3. Get the Users Name
3.1 Setup key_pressed as a local variable
3.2 Start a Repeat loop until the key_pressed = “Y” or “y”
3.3 Ask the user for their name
3.4 Put it into name_of_person
3.5 Ask the user if they are happy with the name entered
3.6 Put it into key_pressed
3.7 End Repeat

4. Three Additions
4.1 Setup number_correct as a local variable
4.2 Put 0 into number_correct
4.3 Start a Repeat with question_number=1 to 3
4.4 Put a random number between 1 and 9 into first_number and second_number
4.5 Ask for the answer to first_number + second_number
4.6 If the cancel button is pressed then exit to the top of the program
4.7 Put it into my_answer
4.8 Put my_answer into line question_number of the field “output”
4.9 If my_answer =first_number + second_number then
4.10 Put a pop up message to the user saying, correct, well done!
4.11 Add 1 to number_correct
4.12 Else
4.13 Put a pop up message to the user saying, wrong answer.
4.14 End If
4.15 End Repeat
4.16 Put how many questions out of 3 the user got correct into line 5 of field “output”
4.17 If the number_correct is = 0 then put “very disappointing” into line 7 of field “output”
4.18 If the number_correct is = 1 then put “disappointing” into line 7 of field “output”
4.19 If the number_correct is = 2 then put “good work” into line 7 of field “output”
4.20 If the number_correct is = 3 then put “well done” into line 7 of field “output”

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 15

 Task 3: Three Additions
Implementation

Open the “Three Additions” stack. It can be found on Glow:

LiveCode Programming Tasks > 3_Three Additions.livecode

Copy the script below carefully into the “Plus” graphic. Check that the program works
correctly by keying in some test data. See if the same result is produced if you key in
the same numbers using a calculator.

// Setup the global variables to be used in this event
global name_of_person, first_number, second_number, my_answer

on mouseUp
 initialise
 get_users_name name_of_person
 three_additions name_of_person, first_number, second_number, my_answer
end mouseUp

on initialise
 // Initialise the variables to null or 0
 put "" into name_of_person
 put 0 into first_number
 put 0 into second_number
 put 0 into my_answer
end initialise

on get_users_name @name_of_person
 // Setup a local variable to check if a key has been pressed
 local key_pressed

 // A loop is used to ask the user if they are happy with the name they have
 // entered. The loop expects either Y or y to be keyed in
 repeat until key_pressed = "Y" or key_pressed = "y"
 ask "Please enter your name"
 // If the cancel button is pressed, go back to the start of the program.
 if the result = "Cancel" then exit to top
 put it into name_of_person
 ask "Are you happy with the name entered? (Y or y for yes)"
 if the result = "Cancel" then exit to top
 put it into key_pressed
 end repeat
end get_users_name

The code is continued on the next page

Plus graphic
(a button can also be a graphic)

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 16

 Task 3: Three Additions
Implementation (continued)
on three_additions name_of_person, @first_number, @second_number, @my_answer
 // Setup a local variable to keep track of the number of sums correct
 local number_correct
 put 0 into number_correct

 // This fixed loop asks the user three basic arithmetic questions
 repeat with loop = 1 to 3
 // The numbers are randomly generated between 1 and 9
 put random (9) into first_number
 put random (9) into second_number
 ask "What is" &&first_number&& "added to" &&second_number&"?"
 if the result = "Cancel" then exit to top

 put it into my_answer

 put "So you think" &&first_number&& "added to" &&second_number&& "is"
 &&my_answer into line loop of field "output" // On the same line

 IF my_answer = first_number + second_number THEN
 answer "Correct answer, well done!"
 add 1 to number_correct
 ELSE
 answer "Wrong answer!"
 END IF
 end repeat

 put "Well" &&name_of_person& ", out of 3 you got" &&number_correct&& "correct."
 into line 5 of field "output" // On the same line

 If number_correct = 0 THEN put "You're not really good at basic arithmetic, you
 must practice more!" into line 7 of field "output" // On the same line
 If number_correct = 1 THEN put "You must practice more! Try to improve on your
 mark for next time!" into line 7 of field "output" // On the same line
 If number_correct = 2 THEN put "Good eort! Keep up the good work and try to
 get full marks next time!" into line 7 of field "output" // On the same line
 If number_correct = 3 THEN put "Full marks! Well done!" into line 7 of field
 "output" // On the same line
end three_additions

Testing

Check that the program works correctly by keying in some test data.
See if the same results are produced if you work out the same
answers in your head.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 17

Task

A program is required to test a users basic subtraction. The program will ask the user for their
name, check to see if they are happy with the name entered and then ask them to answer five
subtractions of two numbers (between 1 and 20). Each answer will then be checked by the
program and a comment about the answer will be displayed.

The number correct out of five along with a suitable comment depending on the mark they
get should be displayed in the output field. You can make up whatever comments you like.

Sample output is shown below:

Your task is to do the following:

• Create the program script for the above problem using the code from the previous task to
help (you may wish to copy the script and amend it).

• You must include internal commentary and parameter passing.
• Assign the code to the “minus” graphic.
• Create a clear button and produce a simple script to clear the output field.

 Note. Look at the clear script from the previous program to help you.
• Test that your program produces the correct results.
• Show the teacher your working program once completed.

The LiveCode stack to produce the script can be found on Glow:

LiveCode Programming Tasks > 4_Five Subtractions.livecode

Good Luck!

 Task 4: Five Subtractions

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 18

 Task 5: Choosing Colours
Specification

A switch statement can be very useful when you have a number of possible inputs and you want to
respond individually to all the possibilities (cases).

For example: A program is required to take in a colour and display an appropriate message for that
colour. The card background and text should also change to that colour.

If the colour entered does not match any of the cases, the program assumes the output field is empty
and you should display a message to the user saying that there is no message for that colour.

Design: Pseudocode for the “Ask Colour” button

Stepwise Design (the main steps of the program)
1. Choose Colour

Stepwise Refinement (the main step further refined into smaller steps)
1. Choose Colour
1.1 Setup theColour as a local variable
1.2 Ask the user for theColour
1.3 Put it into theColour

1.4 Start a Switch Control Structure using the variable theColour
1.5 In the case red is entered, change the background and font colour to red
1.6 Put a message saying blood is red into field “output”
1.7 Break out of switch statement

1.8 In the case blue is entered, set the background and font colour to blue
1.9 Put a message saying the sea is blue into field “output”
1.10 Break out of switch statement

1.11 In the case green is entered, set the background and font colour to green
1.12 Put a message saying grass is green into field “output”
1.13 Break out of switch statement

1.14 In the case black is entered, set the background and font colour to black
1.15 Put a message saying coal is black into field “output”
1.16 Break out of switch statement

1.17 In the case yellow is entered, set the background and font colour to yellow
1.18 Put a message saying the sun is yellow into field “output”
1.19 Break out of switch statement
1.20 End Switch

1.21 If the output field is empty then
1.22 Set the background colour to grey and text colour to black
1.23 Put a message saying that there is no message for that colour into field “output”
1.24 End If

Implementation

Open the “Choosing Colors” stack. It can be found on Glow:

LiveCode Programming Tasks > 5_Choosing Colours.livecode

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 19

 Task 5: Choosing Colours
Implementation

Add the following script to the Ask Colour button and test that your program produces the correct
results for each colour. After you have finished, add another three colours of your choice along with
your own message for each colour. Use the website www.tayloredmktg.com/rgb/ to get the RGB
colour code for the colours you have chosen.

on mouseUp
 choose_colour
end mouseUp

on choose_colour
 // Setup the local variable to be used in this subroutine
 local theColour

 // Setup the card
 put empty into field "output"
 set the backgroundColor of this card to 220,220,220
 set the textColor of field "output" to 0,0,0

 // Prompt the user for their colour
 ask "Please enter your colour"
 put it into theColour

 // Start a switch statement
 switch theColour
 // In the case that the colour is red, blue, green, black or yellow, display a message and change
 // the colour of the text and background to that colour using its RGB code.
 case "Red"
 put "Blood is red" into line 1 of field "output"
 set the backgroundColor of this card to 255,0,0
 set the textColor of field "output" to 255,0,0
 break
 case "Blue"
 put "The sea is blue" into line 1 of field "output"
 set the backgroundColor of this card to 0,0,255
 set the textColor of field "output" to 0,0,255
 case "Green"
 put "Grass is green" into line 1 of field "output"
 set the backgroundColor of this card to 85,107,47
 set the textColor of field "output" to 85,107,47
 break
 case "Black"
 put "Coal is black" into line 1 of field "output"
 set the backgroundColor of this card to 0,0,0
 set the textColor of field "output" to 0,0,0
 break
 case "Yellow"
 put "The sun is yellow" into line 1 of field "output"
 set the backgroundColor of this card to 255,255,0
 set the textColor of field "output" to 255,255,0
 break
 end switch

 // If the user enters a colour not on the list above then set the colour to grey and text to black
 // Display the following error message
 if field "output" is empty then
 set the backgroundColor of this card to 220,220,220
 set the textColor of field "output" to 0,0,0
 put "There is no message for that colour" into line 1 of field "output"
 end if
end choose_colour

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 20

 Arrays

An array is a structured data type that is used for storing sets of data within a single variable.

To put it simply, an array is a variable which can store more than one piece of data in it so long as it is of
the same data type.

Like variables, arrays must be setup at the start of an event. Look at and understand the example
program below. It uses an array called arrayname and one variable called maxstudents which sets the
number of student names to be stored in the array to 5.

// Setup the global array and variable to be used in this event
global arrayName , maxstudents

 on mouseUp
 // Maxstudents will be set to five so five names will be entered and stored in the array
 put 5 into maxstudents
 get_student_name
 display_student_name
 end mouseUp

 on get_student_name
 // Start a fixed loop which will repeat five times
 // for each name to be stored in the arrayname
 repeat with loop = 1 to maxstudents
 // Get the students name
 ask "Please enter the name of student: " & loop
 put it into arrayName[Loop]
 end repeat
 end get_student_name

 on display_student_name
 // Start a fixed loop
 repeat with loop = 1 to maxstudents
 // Put each name entered into arrayname into each
 // line of the output field using loop
 put arrayName[Loop] into line loop of field “output”
 end repeat
 end display_student_name

After the five names have been entered, the following output
will be produced using arrayname:

PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE

Arrays are a bit
like bunk beds

The program knows that arrayname is an array
because of the [loop] straight after it.

[loop] indicates the current element (space)
allocated to the array when it is used in a loop.
This can be used to store the users data. In
this program, the loop repeats five times as
maxstudents is set to 5 in advance.

So, when the loop starts, the user can enter the
five names, similar to that below. Notice that all
data in the array are of the same type in this
case, string (text):

Repeat with loop = 1 to maxstudents

 arrayname[loop] - “Steve” - 1st pass of loop
 arrayname[loop] - “Dave” - 2nd pass of loop
 arrayname[loop] - “Mike” - 3rd pass of loop
 arrayname[loop] - “Liam” - 4th pass of loop
 arrayname[loop] - “Allan” - 5th pass of loop
End Repeat

The contents of the array can be displayed
using the variable loop to ensure all values in
each element (space) are displayed in each line
(loop) 1, 2, 3, 4, 5 of the output field.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 21

 Task 6: Premier League Table

Design: Pseudocode for “Generate Table” Button

Stepwise Design (the main steps of the program)
1. Setup the Global arrays
2. Initialise
3. Read Data   In/Out: arrayname, arrayplayed, arraygd, arraypoints
4. Display Data   Out:  arrayname, arrayplayed, arraygd, arraypoints
   
Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup the Global Arrays
1.1 Setup arrayname, arrayplayed, arraygd, arraypoints as the global arrays to be used in
 this event

2. Initialise
2.1 Put “” into arrayname
2.2 Put 0 into arrayplayed, arraygd, arraypoints

3. Read Data
3.1 Put “Manchster United”, “Arsenal”, “Manchester City”, “Tottenham” and “Chelsea” into
 arrayname
3.2 Split arrayname by using a comma
3.3 Put 26, 26, 27, 26 and 26 into arrayplayed
3.4 Split arrayplayed by using a comma
3.5 Put 32, 29, 19, 9 and 24 into arraygd
3.6 Split arraygd by using a comma
3.7 Put 57, 53, 49, 47, 45 into arraypoints
3.8 Split arraygd by using a comma

4. Display Data
4.1 Display the field headings using the tab function in line 1 of the field “output”
4.2 Display a dotted line under the headings in line 2 of the field “output”
4.3 Start a Repeat with loop 1 to 5
4.4 Put arrayname [loop]& tab & arrayplayed [loop] & tab & arraygd [loop] & tab &
 arraypoints [loop] into line loop+2 of field “output”
4.5 End Repeat

Specification

A program is required to display the first five teams of the
Barclay’s Premier League. Separate arrays should be used
to store the name of the team, games played, goal
difference (gd) and amount of points achieved. This
information should be displayed in an output field.

This field is called output

Implementation

Open the “Premier League Table” stack. It can be found on Glow:

LiveCode Programming Tasks > 6_Premier League Table.livecode

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 22

 Task 6: Premier League Table

Implementation

Assign the following script to the “Generate Table button”. The
purpose of this section of code is to copy the contents of the arrays into
the output field at predefined points using the tab function.

Testing

Test that the program produces the correct results
from the four arrays as shown on the screenshot to
the right:

Notice that the use of the tab
function neatly lays out the data
from the arrays into columns.

// Setup the global arrays to be used in this event
global arrayname, arrayplayed,arraygd, arraypoints

on mouseUp
initialise
 read_data arrayname, arrayplayed, arraygd, arraypoints
 display_data arrayname, arrayplayed, arraygd, arraypoints
end mouseUp

on initialise
put "" into arrayname
put 0 into arrayplayed
put 0 into arraygd
put 0 into arraypoints
end initialise

on read_data @arrayname, @arrayplayed, @arraygd, @arraypoints
 put "Manchester United","Arsenal","Manchester City","Tottenham","Chelsea" into arrayname
 split arrayname by comma
 put 26,26,27,26,26 into arrayplayed
 split arrayplayed by comma
 put 32,29,19,9,24 into arraygd
 split arraygd by comma
 put 57,53,49,47,45 into arraypoints
 split arraypoints by comma
end read_data

on display_data arrayname, arrayplayed, arraygd, arraypoints
 put "Name" & tab & "Games Played" & tab & "Goal Dierence" & tab & "Points" into line 1 of
 field "output" // on same line
 put "--
 ---------------" into line 2 of field "output" // on same line (88 -’s)
 repeat with loop = 1 to 5
 put arrayname[loop] & tab & arrayplayed[loop] & tab & arraygd[loop] & tab & arraypoints
 [loop] into line loop+2 of field "output" // on same line
 end repeat
end display_data

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 23

The String Handling code is continued on the next page

As well as handling numbers, LiveCode can also perform operations on
text, also known as string variables.

The process of joining two or more strings together is called
concatenation. This process is very useful if a program is perhaps
required to generate a random username or code based on a certain
number of characters contained within a users forename and surname.

Open the “String Handling” stack. It can be found in:

LiveCode Programming Tasks > 7_String Handling.livecode

Work through each task one by one and after completing each task, run your program to check that
your program’s output matches the expected output. You don’t need to include the internal
commentary but it’s important that you understand how each section of code works as your practical
coursework may require you to make use of string handling.

Add the following script to the “String Handling” button:

on mouseUp
 string_handling
end mouseUp

on string_handling
 // Setup the local variables
 local first_word, second_word, complete_word, alphabet
 //
 //
 // --------------------------------------
 //
 //
 // Task 1
 // Joining string variables together. This process is called concatenation.
 put "book" into first_word
 put "mark" into second_word
 put first_word into complete_word
 put second_word after complete_word
 put complete_word into line 1 of field "output”
 // RUN YOUR PROGRAM NOW....
 // --------------------------------------
 //
 //
 // Task 2
 // Create the text to go into the string variable alphabet
 put "abcdefghijklmnopqrstuvwxyz" into alphabet
 //
 // --------------------------------------
 //
 //
 // Task 2 (a)
 // Put character 3 of the string variable alphabet into line 3 of field output
 put char 3 of alphabet into line 3 of field “output”
 // RUN YOUR PROGRAM NOW....
 //
 // More tasks over the page.

The following output should be produced:

bookmark

The following output should be produced:

c

 Task 7: String Handling

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 24

 // --------------------------------------
 //
 // Task 2 (b)
 // Put characters 1 to 3 of the string variable alphabet into line 5 of field output
 put char 1 to 3 of alphabet into line 5 of field “output”
 // RUN YOUR PROGRAM NOW....
 //---------------------------------------
 //
 // Task 2 (c)
 // Put characters 24 to 26 of the string variable alphabet into line 7 of field output
 put char 24 to 26 of alphabet into line 7 of field “output”
 // RUN YOUR PROGRAM NOW....
 //---------------------------------------
 //
 //
 // Task 2 (d)
 // Put characters 10 to 20 of the string variable alphabet into line 9 of field output
 put char 10 to 20 of alphabet into line 9 of field “output”
 // RUN YOUR PROGRAM NOW....
 //---------------------------------------
 //
 //
 // Task 2 (e)
 // Put the length of the string variable alphabet into line 11 of field output
 put the length of alphabet into line 11 of field “output”
 // RUN YOUR PROGRAM NOW....
 //---------------------------------------
 //
 //
 // Task 2 (f)
 // Find the position of a character in a string variable
 // This example finds "c" in the string variable alphabet to produce the value of 3
 put oset("c",alphabet) into line 13 of field “output”
 // RUN YOUR PROGRAM NOW....
 //---------------------------------------
 //
 //
 // Task 3: Number to Character upper case
 // Produces a random upper case value from A - Z
 // Capital "A" starts at ASCII 65 + 25 other characters of alphabet
 put NumToChar (random(26) + 64) into line 15 of field “output”
 // RUN YOUR PROGRAM NOW....
 //---------------------------------------
 //
 //
 // Task 4: Number to Character lower case
 // Produces a random lower case value from a - z
 // Lower case "a" starts at ASCII 96 + 25 other characters of alphabet
 put NumToChar (random(26) + 95) into line 17 of field “output”
 // RUN YOUR PROGRAM NOW....
 //---------------------------------------
 //
 //
 // Task 5: Character to Number
 // Produces the ASCII code value for the chosen character
 put CharToNum ("A") into line 19 of field “output”
 // RUN YOUR PROGRAM NOW....
end string_handling

The following output should be produced:

xyz

The following output should be produced:

jklmnopqrst

The following output should be produced:

26

The following output should be produced:

3

The following output should be produced:

any lower case (a-z)

The following output should be produced:

any UPPER case (A-Z)

The following output should be produced:

65

 Task 7: String Handling (continued)
The following output should be produced:

abc

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 25

Task

A program is required to generate a customer code. The program should Ask the user for their
first name and second name.

Once the program has this information, the customer code should be generated.

The customer code should be made up of:

• The first character from both the first name and second name.
• A random number number between 1 and 9.
• A random lower case character (a-z).

Sample output is shown below assuming the name of Steven Whyte has been entered:

Your task is to do the following:

• Produce the program code for this solution using the string handling examples on the
previous pages.

• Create a clear button and produce a simple script to clear the output field.
• Test that your solution works by correctly producing the customer code as shown above.
• Show the teacher your working program once completed.

Your code should be placed into the “Generate Code” button of the “Customer Code
Generator” stack and the output should be displayed in the output field.

The “Customer Code Generator” stack can be found on Glow:

LiveCode Programming Tasks > 8_Customer Code Generator.livecode

Good Luck!

 Task 8: Customer Code Generator

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 26

 Task 9: Student Marks

Specification

A program is required by a teacher to allow her to store marks and grades for her Higher
Computing class. You have been asked to produce a sample program to store the details of
five students.

This program should allow the teacher to get the names and marks of the three main topics
studied at Higher level. Each mark should be validated as whole numbers between 0 and 30
(input validation algorithm).

Once these details have been keyed in, the program should work out the percentage mark and
final grade based on the student’s percentage mark. All of these details should then be
displayed appropriately in a field called output1.

The program should also allow the teacher to:

• Count the occurrences of each grade A, B, C, D and F (count occurrences algorithm).
• Search on a student name (linear search algorithm).
• Find the student with the highest percentage (find maximum algorithm).

These details will be displayed in a field called output2. Sample output from the program is
shown below. You may wish to use the same test data when it comes to testing your program.

Read through the design of Get Student Details over the page to understand what is involved
and then key in the script for this event. The script is supplied for you on pages 29 and 30.

This field is called output1

This field is called output2

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 27

 Task 9: Student Marks

The design is continued on the next page

Design for “Get Student Details” Graphic

Stepwise Design (the main steps of the program with data flow)
1. Setup

2. Get Student Details  In: maxstudents
     In/Out: arrayname, arraycs, arraysdp, arraymm, check_number
3. Calculate Percentage In: maxstudents, arraycs, arraysdp, arraymtm
     In/Out: arraypercentage
4. Get Grade   In: maxstudents, arraypercentage
     In/Out: arraygrade
5. Display Details  In: maxstudents, arrayname, arraycs, arraysdp, arraymm,

    arraypercentage, arraygrade
6. Validate    In: check_number

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup
1.1 Setup arrayname, arraycs, arraysdp, arraymm, arraypercentage, arraygrade as global arrays
1.2 Setup maxstudents and check_number as global variables
1.3 Put the value of 5 into the variable maxstudents
1.4 Clear the “heading”, “output1” and “output2” fields
1.5 Put the text “Enter Student Details” into the field “heading”

2. Get Student Details
2.1 Start a Repeat with loop = 1 to maxstudents
2.2 Ask for the students name
2.3 If the user selects the cancel button then exit to the top of the program
2.4 Put it into arrayname[loop]

2.5 Ask for the students Computer Systems Mark (0-30)
2.6 If the user selects the cancel button then exit to the top of the program
2.7 Put it into check_number
2.8 Call the validation function
2.9 Put check_number into arraycs[loop]

2.10 Ask for the students Software Development Mark (0-30)
2.11 If the user selects the cancel button then exit to the top of the program
2.12 Put it into check_number
2.13 Call the validation function
2.14 Put check_number into arraysdp[loop]

2.15 Ask for the students Multimedia Mark (0-30)
2.16 If the user selects the cancel button then exit to the top of the program
2.17 Put it into check_number
2.18 Call the validation function
2.19 Put check_number into arraymm[loop]
2.20 End Repeat

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 28

 Task 9: Student Marks
Design for “Get Student Details” Graphic (continued)

3. Calculate Percentage
3.1 Start a Repeat with loop = 1 to maxstudents
3.2 Put (arraycs[loop] + arraysdp[loop] + arraymm[loop]) / by 90 * by 100 into arraypercentage[loop]
3.3 End Repeat

4. Get Grade
4.1 Start a Repeat with loop = 1 to maxstudents
4.2 If the arraypercentage[loop] is greater than 70 then put “A” into arraygrade[loop]
4.3 If the arraypercentage[loop] is between 60 and 69 then put “B” into arraygrade[loop]
4.4 If the arraypercentage[loop] is between 50 and 59 then put “C” into arraygrade[loop]
4.5 If the arraypercentag [loop] is between 40 and 49 then put “D” into arraygrade[loop]
4.6 If the arraypercentage[loop] is less than 40 then put “F” into arraygrade[loop]
4.7 End Repeat

5. Display Details
5.1 Set the number format to 0
5.2 Put the column headings of “Student Name” tab, “Systems Mark”, tab, “Software Mark”, tab,
 “Multimedia Mark”, tab, “Percentage”, tab, “Grade” into line 1 of field “output1”
5.3 Start a Repeat with loop 1 to maxstudents
5.4 Put arrayname[loop] & tab & arrayc[loop] & tab & arraysd [loop] & tab & arraymm[loop] & tab
 & arraypercentage[loop] & tab & arraygrade[loop] into line loop+3 of field “output1”
5.5 End Repeat

6. Validate
6.1 Start a Repeat until check_number is between 0 and 30 and is an integer
6.2 Ask the user to re-enter the mark if it is invalid
6.3 If the user selects the cancel button then exit to the top of the program
6.4 Put it into check_number
6.5 End Repeat

Please READ the following before you begin the first script.

After carefully reading through the design. You should begin to code the
script for the first button called “Get Student Details”. Key in all of the code
over the page carefully.

Note. You do not need to include internal commentary at this point. The
commentary is only there to help you understand what is going on.

You will however need to produce internal commentary when it comes to completing your SQA
coursework.

After completing each event, you should test that your program
is working correctly using the supplied test data.

Open the “Higher Computing Marks” stack. It can be found on
Glow:

LiveCode Programming Tasks > 9_Higher Computing Marks.livecode

You must memorise
the structure of this
algorithm as you
might be asked it in
the exam.

Input Validation
Algorithm

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 29

 Task 9: Student Marks

// Setup the global arrays and variables to be used in this event
global arrayname, arraycs, arraysdp, arraymm, arraypercentage, arraygrade, maxstudents, check_number

// When the mouse up event is detected on this button, execute following subroutines
on mouseUp
 set_up maxstudents
 get_student_details maxstudents, arrayname, check_number, arraycs, arraysdp, arraymm
 calculate_percentage maxstudents, arraycs, arraysdp, arraymm, arraypercentage
 get_grade maxstudents, arraypercentage, arraygrade
 display_details maxstudents, arraycs, arraysdp, arraymm, arraypercentage, arraygrade
 validate check_number
end mouseUp

on set_up @maxstudents
 put 5 into maxstudents // 5 students maximum
 put empty into field "output1" // Clear the fields
 put empty into field "output2"
 put empty into field "heading"
 put "Enter Student Details" into field "heading" // Display heading "Enter Student Details"
end set_up

on get_student_details maxstudents, @arrayname, @check_number, @arraycs, @arraysdp, @arraymm
 repeat with loop = 1 to maxstudents // Loop for 1 to 5 students

 // Get the students name
 ask "Please enter the name of student: " & loop
 if the result = "Cancel" then exit to top // If the cancel button is pressed, exit to top
 put it into arrayname[Loop]

 // Get the students validated Computer Systems mark
 ask "Please enter " & arrayname[Loop] & "'s mark for Computer Systems out of 30: "
 if the result = "Cancel" then exit to top
 put it into check_number
 validate // Start the validation function at the bottom of the event
 Put check_number into arraycs[Loop] // Put the validated number into the array

 // Get the students validated Software Development mark
 ask "Please enter " & arrayname[Loop] & "'s mark for Software Development out of 30: "
 if the result = "Cancel" then exit to top
 put it into check_number
 validate // Start the validation function at the bottom of the event
 put check_number into arraysdp[Loop] // Put the validated number into the array

 // Get the students validated Multimedia Technology mark
 ask "Please enter " & arrayname[Loop] & "'s mark for Multimedia out of 30: "
 if the result = "Cancel" then exit to top
 put it into check_number
 validate // Start the validation function at the bottom of the event
 put check_number into arraymm[Loop] // Put the validated number into the array
 end repeat
end get_student_details

Implementation: Script “Get Student Details”

Key the following code into the Get Student Details button. You don’t need to include
the internal commentary, it is only there to help you understand what is going on.

The code is continued on the next page

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 30

 Task 9: Student Marks
on calculate_percentage maxstudents, arraycs, arraysdp, arraymt, @arraypercentage
 repeat with loop = 1 to maxstudents // Loop for 1 to five students
 // Calculate the students percentage mark out of the three tests
 put (arraycs[Loop] + arraysdp[Loop] + arraymm[Loop]) / 90 * 100 into arraypercentage[loop]
 end repeat
end calculate_percentage

on get_grade maxstudents, arraypercentage, @arraygrade
 // Use of multiple IF's to determine what grade a student gets based on their overall percentage
 repeat with loop = 1 to maxstudents // Loop for 1 to 5 students
 IF arraypercentage[loop] >= 70 then put "A" into arraygrade[loop]
 IF arraypercentage[loop] >= 60 AND arraypercentage[loop] <= 69 then put "B" into arraygrade[loop]
 IF arraypercentage[loop] >= 50 AND arraypercentage[loop] <= 59 then put "C" into arraygrade[loop]
 IF arraypercentage[loop] >= 40 AND arraypercentage[loop] <= 49 then put "D" into arraygrade[loop]
 IF arraypercentage[loop] < 40 then put "F" into arraygrade[loop]
 end repeat
end get_grade

on display_details maxstudents, arraycs, arraysdp, arraymm, arraypercentage, arraygrade

 set numberformat to "0" // Set the format of any numbers displayed to 0
 // Display the headings
 put "Student Name" & tab & "Systems Mark" & tab & "Software Mark" & tab & "Multimedia Mark" & tab &
 "Percentage" & tab & "Grade" into line 1 of field "output1" // On the same line

 repeat with loop = 1 to maxstudents // Loop for 1 to 5 students
 // Put the array data into field “output1”
 put arrayname[loop] & tab & arraycs[loop] & tab & arraysdp[loop] & tab & arraymm[loop] & tab &
 arraypercentage[loop] &"%" & tab & arraygrade[loop] into line loop+2 of field "output1" // Same line
 end repeat

 disable image "buttonGetStudents" // Once all details are displayed, disable this button.
     // It will be enabled when the user selects the clear button
end display_details

on validate check_number
 // ***Input Validation***
 // The validation function will ensure the user has entered a whole number between 1 and 30
 repeat until check_number >= 0 and check_number <= 30 and check_number is an integer
 ask "You have entered an invalid guess, please enter a whole number between 0 and 30."
 if the result = "Cancel" then exit to top
 put it into check_number
 end repeat
end validate

Testing

You should now test that your program is working correctly. Key in the following names and
marks for the three assessments below. Check that your percentage mark and grade is the
same as below.

If they are the same then your percentage and grade have been calculated correctly and your
program works.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 31

 Task 9: Student Marks

Design for “Count Student Grades” Graphic

Stepwise Design (the main steps of the program with data flow)
1. Setup
2. Count Occurrences  In: maxstudents, arraygrade

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup
1.1 Pass in maxstudents as the global variable to be used in this event
1.2 Pass in arraygrade and as the global array to be used in this event
1.3 Clear the field “heading”
1.4 Put the text “Count Student Grades” into the field “heading”

2. Count Occurrences
2.1 Setup, AGrade, BGrade, CGrade, DGrade and FGrade as local variables
2.2 Put 0 into all of the local variables
2.3 Start a Repeat with loop 1 to maxstudents
2.4 If the arraygrade[loop] is equal to an “A” then add 1 to AGrade
2.5 If the arraygrade[loop] is equal to an “B” then add 1 to BGrade
2.6 If the arraygrade[loop] is equal to an “C” then add 1 to CGrade
2.7 If the arraygrade[loop] is equal to an “D” then add 1 to DGrade
2.8 If the arraygrade[loop] is equal to an “F” then add 1 to FGrade
2.9 End Repeat

2.10 Put a message showing the number of pupils with an A into line 1 of field “output2” using AGrade
2.11 Put a message showing the number of pupils with a B into line 2 of field “output2” using BGrade
2.12 Put a message showing the number of pupils with a C into line 3 of field “output2” using CGrade
2.13 Put a message showing the number of pupils with a D into line 4 of field “output2” using DGrade
2.14 Put a message showing the number of pupils with an F into line 5 of field “output2” using FGrade

Please READ the following before you begin the second script.

After carefully reading through the design above. You should begin
to code the script for the second button called “Count Student
Grades”. Key in all of the code on the next page carefully and
correct your errors.

This event will count the number of A, B, C, D and F grades in the sample class of five
students using the arraygrade. Each count of grade will then be placed into separate
local variables of AGrade, BGrade, CGrade, DGrade and FGrade as shown above.

After completing the script, you should test that your program is working correctly by
producing the occurrence of each grade obtained. The predicted test data is shown
at the bottom of the next page.

You must memorise the
structure of this algorithm
as you might be asked it in
the exam.

Counting Occurrences
Algorithm

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 32

 Task 9: Student Marks

// Allow access to global arrays and variables to be used in this event
global arraygrade, maxstudents

// When mouse up event is detected on this button then execute following subroutines
on mouseUp
 set_up
 count_occurrences maxstudents, arraygrade
end mouseUp

on set_up
 put empty into field "heading" // Clear the field
 put "Count Student Grades" into field "heading" // Display the heading "Count Student Grades"
end set_up

on count_occurrences maxstudents, arraygrade
 local AGrade, BGrade, CGrade, DGrade, FGrade // Setup local variables

 put 0 into AGrade // zero the local variables
 put 0 into BGrade
 put 0 into CGrade
 put 0 into DGrade
 put 0 into FGrade

 // ***Counting Occurrences***
 // Count the number of A, B, C, D and F grades obtained by the class
 repeat with loop = 1 to maxstudents // Loop for 1 to 5 students
 IF arraygrade[loop] = "A" then add 1 to AGrade
 IF arraygrade[loop] = "B" then add 1 to BGrade
 IF arraygrade[loop] = "C" then add 1 to CGrade
 IF arraygrade[loop] = "D" then add 1 to DGrade
 IF arraygrade[loop] = "F" then add 1 to FGrade
 end repeat

 // Print the results into field “output2”
 put "The number of students who have obtained a Grade A is: " & AGrade into line 1 of field "output2"
 put "The number of students who have obtained a Grade B is: " & BGrade into line 2 of field "output2"
 put "The number of students who have obtained a Grade C is: " & CGrade into line 3 of field "output2"
 put "The number of students who have obtained a Grade D is: " & DGrade into line 4 of field "output2"
 put "The number of students who have obtained a Grade F is: " & FGrade into line 5 of field "output2"
end count_occurrences

Implementation: Script “Count Student Grades”

Key the following code into the Count Student Grades Button. You don’t need to
include the internal commentary, it is only there to help you understand what is
going on.

Testing

Test that your program successfully counts the number of each occurrence of grade A, B, C, D
and F and places this into the output2 field. Your results should look the same as the results
below if you are using the same test data as you keyed in on page 32.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 33

 Task 9: Student Marks
Design for “Find a Student” Graphic

Stepwise Design (the main steps of the program with data flow)
1. Setup
2. Find Student  In: maxstudents
    In: arrayname, arraycs, arraysdp, arraymt, arraypercentage, arraygrade

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup
1.1 Pass in the global variable maxstudents to be used in this event
1.2 Pass in the global arrays arrayname, arraycs, arraysdp, arraymm, arraypercentage, arraygrade
 to be used in this event
1.3 Clear the field “heading”
1.4 Put the text “Find Student” into the field “heading”

2. Find Student
2.1 Setup student_name and found as local variables
2.2 Ask for the name of the student to find
2.3 Put it into student_name
2.4 Set the number format to 0
2.5 Put the column headings of “Student Name” & tab & “Systems Mark” & tab & “Software Mark” &
 tab & “Multimedia Mark” & tab & “Percentage” & tab & “Grade” into line 1 of field “output1”

2.6 Put false into the boolean variable found
2.7 Start a Repeat with loop = 1 to maxstudents
2.8 If the arrayname[loop] = student_name then
2.9 Put arrayname[loop] & tab & arraycs[loop] & tab & arraysdp[loop] & tab& arraymm[loop]
 tab & arraypercentage[loop] & tab & arraygrade[loop] into loop+2 of field “output1”
2.10 Put true into the boolean variable found
2.11 End If
2.12 End Repeat
2.13 If boolean variable found = false then
2.14 Put a message telling the user that no students found into loop+2 of field “output1”
2.15 End If

Please READ the following before you begin the third script.

After carefully reading through the design above. You should begin
to code the script for the third button called “Find a Student”. Key
in all of the code carefully.

This event will compare the users search with each name in arrayname
and display the student’s details in the output1 field. If no name is found in arrayname
then a message explaining that no students have been found is displayed. Notice
that a boolean (true/false) variable is used to determine whether or not to display the
no students found message.

After completing the script, you should test that your program is working correctly. The
predicted test data is shown at the bottom of the next page assuming the search of
“Steven Whyte” is entered.

You must memorise the structure of this
algorithm as you might be asked it in the
exam.

Linear Search Algorithm

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 34

 Task 9: Student Marks

// Allow access to global arrays and variables to be used in this event
global maxstudents, arrayname, arraycs, arraysdp, arraymm, arraypercentage, arraygrade

// When mouse up event is detected on this button then execute following subroutines
on mouseUp
 set_up
 find_student arrayname, arraycs, arraysdp, arraymm, arraypercentage, arraygrade, maxstudents
end mouseUp

on set_up
 put empty into field "heading" // Clear the fields
 put empty into field "output1"
 put "Find Student" into field "heading" // Display heading "Find Student" for this event
end set_up

on find_student arrayname, arraycs, arraysdp, arraymm, arraypercentage, arraygrade, maxstudents
 local student_name, found // Setup local variables

 ask "Please enter the name of the student:"
 put it into student_name // User enters the name to search

 set numberformat to "0" // Set the format of any numbers displayed to 0
 // Display the headings
 put "Student Name" & tab & "Systems Mark" & tab & "Software Mark" & tab & "Multimedia Mark" & tab &
 "Percentage" & tab & "Grade" into line 1 of field "output1" // on the same line
 put false into found // Set the found boolean variable to false

 // ***Linear search***
 // Search for a student based on the name the user has entered
 repeat with loop = 1 to maxstudents // Loop for 1 to 5 students
 if arrayname[Loop] = student_name then // If the names array is equal to the search name then..
 // Put the array data into field “output1”
 put arrayname[loop] & tab & arraycs[loop] & tab & arraysdp[loop] & tab & arraymm[loop] & tab &
 arraypercentage[loop] &"%" & tab & arraygrade[loop] into line loop+2 of field "output1" // on the
              // same line
 put true into found // if found set to true
 end if
 end repeat

 // If no match found, set found to false and then print a suitable message into field “output1”
 if found = false then put "***************************** No students with that name have been found
 *****************************" into line 3 of field "output1" // on the same line (29 stars each side)
end find_student

Implementation: Script “Find a Student”

Key the following code into the Find a Student button . You don’t need to include the
internal commentary, it is only there to help you understand what is going on.

Testing

Test that your program successfully finds a student once you search on their name. This
should be displayed in the output1 field.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 35

 Task 9: Student Marks

Design for “Highest Percentage Mark” Graphic

Stepwise Design (the main steps of the program with data flow)
1. Setup
2. Find Maximum Percentage  In: maxstudents, arrayname, arraypercentage

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup
1.1 Pass in maxstudents as the global variable to be used in this event
1.2 Pass in arrayname and arraypercentage as the global arrays to be used in this event
1.2 Clear the field “heading”
1.3 Put the text “Highest Student Percentage” into the field “heading”

2. Find Maximum Percentage
2.1 Setup maximum and position as local variables
2.2 Put 0 into maximum
2.3 Start a Repeat with loop = 1 to maxstudents
2.4 If the arraypercentage[loop] is greater than maximum then
2.5 Put arraypercentage[loop] into maximum
2.6 Put loop into position
2.7 End If
2.8 End Repeat

2.9 Set the number format of any number shown to a whole number (0)
2.10 Put a message showing name and percentage of the student who obtained the highest
 percentage using the variable position into line 7 of field “output2”

Please READ the following before you begin the fourth script.

After carefully reading through the design above. You should begin
to code the script for the fourth button called “Highest Percentage
Mark”. Key in all of the code carefully.

This event will find and display the highest percentage mark using the
arraypercentage.

Once the highest percentage has been found, the program will produce the name and
percentage mark of the student with the highest percentage.

After completing the script, you should test that the program is working correctly. The
predicted test data is shown at the top of the next page.

You should also key in the code to clear the output and text fields. This code is
displayed at the bottom of the next page and should be assigned to the clear button.

You must memorise the
structure of this algorithm
as you might be asked it in
the exam.

Find Max Algorithm

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 36

 Task 9: Student Marks

// Allow access to global arrays and variables to be used in this event
global maxstudents, arrayname, arraypercentage

// When mouse up event is detected on this button then execute following subroutines
on mouseUp
 set_up
 find_maximum_percentage maxstudents, arrayname, arraypercentage
end mouseUp

on set_up
 put empty into field "heading" // Clear the fields
 put "Highest Student Percentage" into field "heading" // Display heading "Highest Student
        // Percentage" for this event
end set_up

on find_maximum_percentage maxstudents, arrayname, arraypercentage
 local maximum, position // Setup local variables
 put 0 into maximum // Zero the Maximum variable

 // ***Find Maximum***
 // Find the student with the highest percentage
 Repeat with loop = 1 to maxstudents   // Loop for 1 to 5 students
 If arraypercentage[loop] > maximum then // If the percentage array is greater than Maximum
 put arraypercentage[loop] into maximum // Put the value from the array into Maximum
 put loop into position  // Record the position of the loop
 end if
 end Repeat

 set numberformat to "0" // Set the format of any numbers displayed to 0
 // Display the position student with the highest percentage in field “Output2”
 put "The student with the highest percentage is " & arrayname[position] & " with a percentage of " &
 arraypercentage[position] & "%." into line 7 of field "output2" // On same line
end find_maximum_percentage

// When the mouse up event is detected on this button, execute following actions
on mouseUp
 put empty into field "output1" // Clear the fields
 put empty into field "output2"
 put empty into field "heading"
 enable image "buttonGetStudents" // Enable the image button “Get Students” once the clear button
     // has been pressed
end mouseUp

Implementation: Script “Highest Percentage Mark”

Key the following code into the Highest Percentage Mark. You don’t need to include
the internal commentary, it is only there to help you understand what is going on.
Once completed, test that your program correctly identifies the student with the
highest percentage mark. This should be placed into line 7 of the output2 field.

Implementation: Script “Clear”

Once you have tested that your highest percentage button is working, key in the
following code for the clear button carefully. You don’t need to include the internal
commentary, it is only there to help you understand what is going on.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 37

 Task 9: Student Marks

Task

You are now going to attempt to create the script for one further button in
the Student Marks program.

This button is going to find the lowest
percentage mark and display the
name and percentage mark into line
8 of the output2 field.

The script you will enter is very similar
to the Highest Percentage Mark so
use this to help you. Also use the
pseudocode on the next page to
help you.

Before you begin creating the script, you must do the following:

• Import the image “9B...Lowest Percentage Mark Graphic.png”
by importing the graphic as a control, as shown above. It
can be found in your LiveCode Programming Tasks folder.

• Double click on the imported image and give the image a
name and a tooltip as shown on the right.

 Note. A tooltip is a small yellow hover box which appears with information in it once the
cursor passes over an object as shown on the image above.

• Once you have resized the graphic and moved it into its desired position, you must lock
it’s size and position to prevent it from going back to its normal size.

  Note. To do this, double click on the graphic to bring up the properties inspector again
 and select “size and position”. Check the box beside “lock size and position” as shown
 below.



You are now ready to create the script for the Lowest Percentage Mark. Make sure that you
test that your script produces the correct result in the output2 field once complete.

Remember, if you get stuck, think! You’ve already created the script to find the highest
percentage. Therefore, the script to find lowest percentage is going to be very similar! Use
the pseudocode over the page to help.

Good Luck!

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 38

 Task 9: Student Marks

Design for “Lowest Percentage Mark” Graphic

Stepwise Design (the main steps of the program with data flow)
1. Setup
2. Find Minimum Percentage  In: maxstudents, arrayname, arraypercentage

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup
1.1 Pass in maxstudents as the global variables to be used in this event
1.2 Pass in arrayname and arraypercentage as the global arrays to be used in this event
1.2 Clear the field “heading”
1.3 Put the text “Lowest Student Percentage” into the field “heading”

2. Find Minimum Percentage
2.1 Setup minimum and position as local variables
2.2 Put 100 into minimum
2.3 Start a Repeat with loop 1 to maxstudents
2.4 If the arraypercentage[loop] is less than minimum then
2.5 Put arraypercentage[loop] into minimum
2.6 Put loop into position
2.7 End If
2.8 End Repeat

2.9 Set the number format of any number shown to a whole number (0)
2.10 Put a message showing name and percentage of the student who obtained the lowest
 percentage using the variable position into line 8 of field “output2”

Testing

Test that your program correctly produces the student with the lowest overall percentage in
line 8 of the output2 field. Show the teacher your working program once completed.

You may wish to use the same test data as shown below:

You must memorise the
structure of this algorithm
as you might be asked it in
the exam.

Find Min Algorithm

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 39

 Task 10: ExtremeTech Graphics Card Database

Specification

A program is required by a company called ExtremeTech. The company specialise in the selling
of high quality graphics cards.

ExtremeTech require the program in their retail outlets to allow:

• The customer to display a list of all graphics cards on the system.
• The customer to search for all graphics cards based on their requirements of
 how much the customer is willing to spend on a graphics card (maximum cost),
 and how much RAM it must have (minimum RAM).
• The program should find and display the name and clock speed of the graphics
 card with the highest clock speed.
• The program should also allow the user to find the number of graphics cards
 that are higher than the threshold clock speed that the user enters.

This field is called output

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 40

 Task 10: ExtremeTech Graphics Card Database

Design for “Display All Cards” Graphic

Stepwise Design (the main steps of the program with data flow)
1. Setup    In/Out:  arrayname, arrayram, arrayclockspeed, arraycost
    In/Out:  username
2. Display Data  In: arrayname, arrayram, arrayclockspeed, arraycost

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup
1.1 Setup arrayname, arrayram, arrayclockspeed, arraycost as global arrays
1.2 Setup username as global variable
1.4 Clear the “subheading” and “output” fields
1.5 Ask the user for their name
1.6 Put it into the variable username
1.7 Put “RadeonX2”, GeForce95”, “VaporX”, “AsusOX2”, “Nvidia42X” into array_name
1.8 Split arrayname using a comma
1.9 Put 1, 1, 2, 2, 3 into arrayram
1.10 Split the arrayram using a comma
1.11 Put 1986, 550, 870, 790, 1600 into arrayclockspeed
1.12 Split arrayclockspeed using a comma
1.13 Put 187, 41, 150, 354, 575 into arraycost
1.14 Split arraycost using a comma

2. Display Data
2.1 Put “Displaying All Graphics Cards” into the field “subheading”
2.2 Put “Name” tab “RAM (GB)” tab “Clock Speed (GHz)” tab “Cost” into line 1 of field “output”
2.3 Repeat with loop 1 to 5
2.4 Put arrayname[loop], tab arrayram[loop], tab arrayclockspeed [loop], tab arraycost [loop] into
 line loop + 1 of field “output”
2.5 End repeat

Please READ the following before you begin the first script.

After carefully reading through the design above. You should begin to code
the script for the first button called “Get Student Details”. Key in all of the
code over the page carefully.

After completing each event, you should test that your program is working
correctly by displaying a list of all graphics cards in the output field. The output
should be the same as shown on the right.

Open the “ExtremeTech Graphics Card Database” stack. It can be found on Glow:

LiveCode Programming Tasks > 10_ExtremeTech Graphics Card Database.livecode

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 41

 Task 10: ExtremeTech Graphics Card Database

// Setup the global arrays and variable to be used in this event
global arrayname, arrayram, arrayclockspeed, arraycost, username

on mouseup
 set_up arrayname, arrayram, arrayclockspeed, arraycost, username
 display_data arrayname, arrayram, arrayclockspeed, arraycost
end mouseup

on set_up @arrayname, @arrayram, @arrayclockspeed, @arraycost, @username
 put empty into field "subheading"
 put empty into field "output"
 ask "Please enter your name"
 put it into username

 // Add the graphics card data to the arrays
 put "RadeonX2","GeForce95","VaporX","AsusOX2","Nvidia42X" into arrayname
 split arrayname by comma
 put 1,1,2,2,3 into arrayram
 split arrayram by comma
 put 1986,550,870,790,1600 into arrayclockspeed
 split arrayclockspeed by comma
 put 187,41,150,354,575 into arraycost
 split arraycost by comma
end set_up

on display_data arrayname, arrayram, arrayclockspeed, arraycost
 put "Displaying All Graphics Cards" into field "subheading"
 put "Name" & tab & "RAM (GB)" & tab & "Clock Speed (GHz)" & tab & "Cost" into line 1 of field
 "output" // On the same line
 repeat with loop = 1 to 5
 put arrayname[loop] & tab & arrayram[loop] & tab & arrayclockspeed[loop] & tab & "£" &
 arraycost[loop] into line loop+1 of field "output" // On the same line
 end repeat
 // Enable the following buttons when "Display All Cards" is selected
 enable image buttonFasterThan
 enable image buttonHighestClockSpeed
 enable image buttonRAMandCost
 enable image buttonQuitApplication
end display_data

Implementation: Script “Display All Cards”

Key the following code into the Display All Cards button. You don’t need to include
the internal commentary, it is only there to help you understand what is going on.

Testing

Test that your program correctly produces a list
of the five graphics cards when you run your
program and select the “Display All Cards”
button.

Your output should look the same as that
shown on the right.

If it works correctly, move onto the next part of
the program.

If your program is not working correctly,
correct your errors and retest.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 42

 Task 10: ExtremeTech Graphics Card Database

Design for “Cards Faster Than..” Graphic

Stepwise Design (the main steps of the program with data flow)
1. Setup   
2. Cards Faster Than In: arrayclockspeed

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup
1.1 Pass in arrayclockspeed as the global array to be used in this event

1.3 Clear the “subheading” and “output” fields
1.6 Put the heading “Find Graphics Cards Faster Than..” into field “subheading”

2. Cards Faster Than
2.1 Setup the local variables of min_clock_speed and counter to be used in this subroutine
2.2 Put 0 into min_clock_speed
2.3 Put 0 into counter
2.4 Ask the user to enter the minimum clock speed
2.5 Put the minimum clock speed into the variable minclockspeed
2.6 Repeat with loop 1 to 5
2.7 If arrayclockspeed [loop] is greater than minclockspeed then
2.8 Add 1 to the variable counter
2.9 End If
2.10 End Repeat

2.11 Put the message “The number of graphics cards faster than ” followed by the variable
 minclockspeed “MHz is ” followed by the variable counter into line 1 of the field “output”

Please READ the following before you begin the second script.

After carefully reading through the design above. You should begin to code
the script for the first button called “Cards Faster Than..”. Key in all of the
code over the page carefully.

After completing each event, you should test that your program is working
correctly.

The program should take in a minimum clock speed from the user and using the counting
occurrences algorithm, display the number of graphics cards that are faster than the minimum
clock speed.

This should be placed into line 1 of the output field.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 43

 Task 10: ExtremeTech Graphics Card Database

// Pass in the global arrays setup earlier
global arrayclockspeed

on mouseUp
 set_up
 cards_faster_than arrayclockspeed
end mouseUp

on set_up
 // Clear text from the fields
 put empty into field "subheading"
 put empty into field "output"

 // Display the heading
 put "Find Graphics Cards faster than.." into field "subheading"
end set_up

on cards_faster_than arrayclockspeed
 // Set up the local variables
 local minclockspeed, counter

 put 0 into minclockspeed
 put 0 into counter

 // Ask for the minimum clock speed
 ask "What is the minimum speed?"
 put it into minclockspeed

 // Display graphics cards matching search criteria
 repeat with loop = 1 to 5
 if arrayclockspeed[Loop] > minclockspeed then
 add 1 to counter
 end if
 end repeat
 put "The number of cards faster than "& minclockspeed & " MHz was "&counter into line 1 of field
 "output" // On the same line
end cards_faster_than

Implementation: Script “Cards Faster Than..”

Key the following code into the Cards Faster Than.. button. You don’t need to include
the internal commentary, it is only there to help you understand what is going on.

Testing

Test that your program correctly produces displays
the number of graphics cards faster than the
minimum clock speed entered by the user.

The output on the right shows the number of
graphics cards faster than 1024MHz. 2 is the
correct answer as both the RadeonX2 and the
Nvidia42X have a faster clock speed of
1024MHz.

You should do similar testing and check with the
list of cards if the number produced is correct. If
it is, move onto the next part of this program.

If your program is not working correctly, correct your errors and retest.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 44

 Task 10: ExtremeTech Graphics Card Database

Design for “Highest Clock Speed” Graphic

Stepwise Design (the main steps of the program with data flow)
1. Setup   
2. Highest Clock Speed In: arrayname, arrayclockspeed

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup
1.1 Pass in arrayname, arrayclockspeed as the global arrays to be used in this event

1.2 Clear the “subheading” and “output” fields
1.3 Put the heading “Find the Graphics Card with the Highest Clock Speed” into field “subheading”

2. Highest Clock Speed
2.1 Setup the local variables of maxclockspeed and position to be used in this subroutine
2.2 Put 0 into maxclockspeed
2.3 Put 0 into position

2.4 Repeat with loop 1 to 5
2.5 If arrayclockspeed [loop] is greater than maxclockspeed then
2.6 Put arrayclockspeed[loop] into maxclockspeed
 Put loop into position
2.7 End If
2.8 End Repeat

2.9 Put the message “The card with the highest clock speed is ” followed by arrayname[position] into
 line 1 of field “output”

Please READ the following before you begin the second script.

After carefully reading through the design above. You should begin to code
the script for the first button called “Highest Clock Speed”. Key in all of the
code over the page carefully.

After completing each event, you should test that your program is working
correctly.

The program should find the graphics card with the highest clock speed using the find
maximum algorithm and then display the name of graphics card in line 1 of the output field.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 45

 Task 10: ExtremeTech Graphics Card Database

// Allow access to global arrays setup earlier
global arrayname, arrayclockspeed

on mouseUp
 set_up
 highest_clock_speed arrayname, arrayclockspeed
end mouseUp

on set_up
 // Clear text from the fields
 put empty into field "subheading"
 put empty into field "output"

 // Display the heading
 put "Find the Graphics Card with the Highest Clock Speed" into field "subheading"
end set_up

on highest_clock_speed arrayname, arrayclockspeed
 // Set up the local variables
 local maxclockspeed, position

 put 0 into maxclockspeed
 put 0 into position

 // Display graphics cards matching search criteria
 repeat with loop = 1 to 5
 if arrayclockspeed[Loop] > maxclockspeed then
 put arrayclockspeed[Loop] into maxclockspeed
 put loop into position
 end if
 end repeat
 put "The card with the highest clock speed is "& arrayname[position] into line 1 of field
"output" // On the same line
end highest_clock_speed

Implementation: Script “Highest Clock Speed”

Key the following code into the Highest Clock Speed button. You don’t need to include
the internal commentary, it is only there to help you understand what is going on.

Testing

Test that your program correctly displays the name
of the graphics card with the fastest clock
speed.

Your output should be the same as shown on the
right. This shows that the RadeonX2 is the
graphics card with the fastest clock speed.

If the correct output is produced, move onto the
next part of this program.

If your program is not working correctly, correct
your errors and retest.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 46

 Task 10: ExtremeTech Graphics Card Database

Design for “Search on RAM and Cost” Graphic

Stepwise Design (the main steps of the program with data flow)
1. Setup   
2. Search Cards In: arrayname, arrayram, arrayclockspeed, arraycost

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup
1.1 Pass in arrayname, arrayram, arrayclockspeed and arraycost as the global arrays to be used in
 this event

1.2 Clear the “subheading” and “output” fields
1.3 Put the heading “Find the Graphics Card that match RAM and Cost” into field “subheading”

2. Search Cards
2.1 Setup the local variables of minram and maxcost to be used in this subroutine
2.2 Ask the user to enter the minimum amount of RAM required
2.3 Put it into the variable minram
2.4 Ask the user to enter the maximum amount that they are willing to spend on a graphics card
2.5 Put it into the variable maxcost
2.6 Put “Name” tab “RAM (GB)” tab “Clock Speed (GHz)” tab “Cost” into line 1 of field “output”
2.7 Repeat with loop 1 to 5
2.8 If arrayram[loop] >= minram and arraycost[loop] is <= maxcost then
2.9 Put arrayname[loop], tab arrayram[loop], tab arrayclockspeed [loop], tab arraycost [loop]
 into line loop + 1 of field “output”
2.10 End If
2.11 End Repeat

Please READ the following before you begin the second script.

After carefully reading through the design above. You should begin to code
the script for the first button called “Search on RAM and Cost”. Key in all of
the code over the page carefully.

After completing each event, you should test that your program is working
correctly.

The program should find the graphics cards based on the minimum RAM and maximum cost
that the user enters using the linear search algorithm. It should display a list of graphics cards
which match the search in the output field.

 Higher Computing Science  Programming with LiveCode (Community Edition)

Gracemount High School Page 47

 Task 10: ExtremeTech Graphics Card Database

// Allow access to global arrays setup earlier
global arrayname, arrayram, arrayclockspeed, arraycost

on mouseUp
 set_up
 search_cards arrayname, arrayram, arrayclockspeed, arraycost
end mouseUp

on set_up
 // Clear text from the fields
 put empty into field "subheading"
 put empty into field "output"
 // Display the heading
 put "Find Graphics Cards that match RAM and Cost" into field "subheading"
end set_up

on search_cards arrayname, arrayram, arrayclockspeed, arraycost
 // Set up the local variables
 local minram
 local maxcost
 local found
 // Ask the user for the minimum cost and maximum amount of RAM required
 ask "Please enter the minimum amount of RAM you wish your graphics card to have:"
 put it into minram
 ask "Please enter the maximum amount you are willing to spend on a new graphics card:"
 put it into maxcost

 // Display graphics cards matching search criteria
 put "Name" & tab & "RAM (GB)" & tab & "Clock Speed (GHz)" & tab & "Cost" into line 1 of field "output"
 put false into found
 repeat with loop = 1 to 5
 if arrayram[Loop] >= minram AND arraycost[loop] <= maxcost then
 put arrayname[loop] & tab & arrayram[loop] & tab & arrayclockspeed[loop] & tab & "£" & arraycost
 [loop] into line loop+3 of field "output" // On the same line
 put true into found
 end if
 end repeat
 if found = false then put "****** No Cards which match your search have been found ******" into line
 position of field "output" // On the same line
end search_cards

Implementation: Script “Search on RAM and Cost”

Key the following code into the Highest Clock Speed button. You don’t need to include
the internal commentary, it is only there to help you understand what is going on.

Testing

Test that your program correctly displays a list of graphics
cards based on the users search of RAM and Cost.

The output shown on the right assumes a minimum RAM of
3GB and a maximum cost of £800.

If the correct output is produced, move onto the next part of
this program.

If your program is not working correctly, correct your errors and retest.

